3.5.88 \(\int \frac {(-4+x^5) (1+x^5)^{3/4} (2-x^4+2 x^5)}{x^{12}} \, dx\) [488]

3.5.88.1 Optimal result
3.5.88.2 Mathematica [A] (verified)
3.5.88.3 Rubi [B] (verified)
3.5.88.4 Maple [A] (verified)
3.5.88.5 Fricas [A] (verification not implemented)
3.5.88.6 Sympy [C] (verification not implemented)
3.5.88.7 Maxima [A] (verification not implemented)
3.5.88.8 Giac [F]
3.5.88.9 Mupad [B] (verification not implemented)

3.5.88.1 Optimal result

Integrand size = 30, antiderivative size = 38 \[ \int \frac {\left (-4+x^5\right ) \left (1+x^5\right )^{3/4} \left (2-x^4+2 x^5\right )}{x^{12}} \, dx=\frac {4 \left (1+x^5\right )^{3/4} \left (14-11 x^4+28 x^5-11 x^9+14 x^{10}\right )}{77 x^{11}} \]

output
4/77*(x^5+1)^(3/4)*(14*x^10-11*x^9+28*x^5-11*x^4+14)/x^11
 
3.5.88.2 Mathematica [A] (verified)

Time = 1.89 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.74 \[ \int \frac {\left (-4+x^5\right ) \left (1+x^5\right )^{3/4} \left (2-x^4+2 x^5\right )}{x^{12}} \, dx=\frac {4 \left (1+x^5\right )^{7/4} \left (14-11 x^4+14 x^5\right )}{77 x^{11}} \]

input
Integrate[((-4 + x^5)*(1 + x^5)^(3/4)*(2 - x^4 + 2*x^5))/x^12,x]
 
output
(4*(1 + x^5)^(7/4)*(14 - 11*x^4 + 14*x^5))/(77*x^11)
 
3.5.88.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(89\) vs. \(2(38)=76\).

Time = 0.47 (sec) , antiderivative size = 89, normalized size of antiderivative = 2.34, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {2364, 27, 2374, 9, 27, 2374, 27, 951}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^5-4\right ) \left (x^5+1\right )^{3/4} \left (2 x^5-x^4+2\right )}{x^{12}} \, dx\)

\(\Big \downarrow \) 2364

\(\displaystyle \frac {1}{154} \left (\frac {112}{x^{11}}-\frac {88}{x^7}+\frac {154}{x^6}+\frac {77}{x^2}-\frac {308}{x}\right ) \left (x^5+1\right )^{3/4}-\frac {15}{4} \int \frac {-308 x^{10}+77 x^9+154 x^5-88 x^4+112}{154 x^7 \sqrt [4]{x^5+1}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{154} \left (\frac {112}{x^{11}}-\frac {88}{x^7}+\frac {154}{x^6}+\frac {77}{x^2}-\frac {308}{x}\right ) \left (x^5+1\right )^{3/4}-\frac {15}{616} \int \frac {-308 x^{10}+77 x^9+154 x^5-88 x^4+112}{x^7 \sqrt [4]{x^5+1}}dx\)

\(\Big \downarrow \) 2374

\(\displaystyle \frac {1}{154} \left (\frac {112}{x^{11}}-\frac {88}{x^7}+\frac {154}{x^6}+\frac {77}{x^2}-\frac {308}{x}\right ) \left (x^5+1\right )^{3/4}-\frac {15}{616} \left (-\frac {1}{12} \int \frac {12 \left (308 x^9-77 x^8-112 x^4+88 x^3\right )}{x^6 \sqrt [4]{x^5+1}}dx-\frac {56 \left (x^5+1\right )^{3/4}}{3 x^6}\right )\)

\(\Big \downarrow \) 9

\(\displaystyle \frac {1}{154} \left (\frac {112}{x^{11}}-\frac {88}{x^7}+\frac {154}{x^6}+\frac {77}{x^2}-\frac {308}{x}\right ) \left (x^5+1\right )^{3/4}-\frac {15}{616} \left (-\frac {1}{12} \int \frac {12 \left (308 x^6-77 x^5-112 x+88\right )}{x^3 \sqrt [4]{x^5+1}}dx-\frac {56 \left (x^5+1\right )^{3/4}}{3 x^6}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{154} \left (\frac {112}{x^{11}}-\frac {88}{x^7}+\frac {154}{x^6}+\frac {77}{x^2}-\frac {308}{x}\right ) \left (x^5+1\right )^{3/4}-\frac {15}{616} \left (-\int \frac {308 x^6-77 x^5-112 x+88}{x^3 \sqrt [4]{x^5+1}}dx-\frac {56 \left (x^5+1\right )^{3/4}}{3 x^6}\right )\)

\(\Big \downarrow \) 2374

\(\displaystyle \frac {1}{154} \left (\frac {112}{x^{11}}-\frac {88}{x^7}+\frac {154}{x^6}+\frac {77}{x^2}-\frac {308}{x}\right ) \left (x^5+1\right )^{3/4}-\frac {15}{616} \left (\frac {1}{4} \int \frac {112 \left (4-11 x^5\right )}{x^2 \sqrt [4]{x^5+1}}dx-\frac {56 \left (x^5+1\right )^{3/4}}{3 x^6}+\frac {44 \left (x^5+1\right )^{3/4}}{x^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{154} \left (\frac {112}{x^{11}}-\frac {88}{x^7}+\frac {154}{x^6}+\frac {77}{x^2}-\frac {308}{x}\right ) \left (x^5+1\right )^{3/4}-\frac {15}{616} \left (28 \int \frac {4-11 x^5}{x^2 \sqrt [4]{x^5+1}}dx-\frac {56 \left (x^5+1\right )^{3/4}}{3 x^6}+\frac {44 \left (x^5+1\right )^{3/4}}{x^2}\right )\)

\(\Big \downarrow \) 951

\(\displaystyle \frac {1}{154} \left (\frac {112}{x^{11}}-\frac {88}{x^7}+\frac {154}{x^6}+\frac {77}{x^2}-\frac {308}{x}\right ) \left (x^5+1\right )^{3/4}-\frac {15}{616} \left (-\frac {112 \left (x^5+1\right )^{3/4}}{x}-\frac {56 \left (x^5+1\right )^{3/4}}{3 x^6}+\frac {44 \left (x^5+1\right )^{3/4}}{x^2}\right )\)

input
Int[((-4 + x^5)*(1 + x^5)^(3/4)*(2 - x^4 + 2*x^5))/x^12,x]
 
output
((112/x^11 - 88/x^7 + 154/x^6 + 77/x^2 - 308/x)*(1 + x^5)^(3/4))/154 - (15 
*((-56*(1 + x^5)^(3/4))/(3*x^6) + (44*(1 + x^5)^(3/4))/x^2 - (112*(1 + x^5 
)^(3/4))/x))/616
 

3.5.88.3.1 Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 951
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[c*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), 
 x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a*d*( 
m + 1) - b*c*(m + n*(p + 1) + 1), 0] && NeQ[m, -1]
 

rule 2364
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{u 
 = IntHide[x^m*Pq, x]}, Simp[u*(a + b*x^n)^p, x] - Simp[b*n*p   Int[x^(m + 
n)*(a + b*x^n)^(p - 1)*ExpandToSum[u/x^(m + 1), x], x], x]] /; FreeQ[{a, b} 
, x] && PolyQ[Pq, x] && IGtQ[n, 0] && GtQ[p, 0] && LtQ[m + Expon[Pq, x] + 1 
, 0]
 

rule 2374
Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Wit 
h[{Pq0 = Coeff[Pq, x, 0]}, Simp[Pq0*(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c 
*(m + 1))), x] + Simp[1/(2*a*c*(m + 1))   Int[(c*x)^(m + 1)*ExpandToSum[2*a 
*(m + 1)*((Pq - Pq0)/x) - 2*b*Pq0*(m + n*(p + 1) + 1)*x^(n - 1), x]*(a + b* 
x^n)^p, x], x] /; NeQ[Pq0, 0]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && 
 IGtQ[n, 0] && LtQ[m, -1] && LeQ[n - 1, Expon[Pq, x]]
 
3.5.88.4 Maple [A] (verified)

Time = 1.00 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.61

method result size
pseudoelliptic \(\frac {8 \left (x^{5}-\frac {11}{14} x^{4}+1\right ) \left (x^{5}+1\right )^{\frac {7}{4}}}{11 x^{11}}\) \(23\)
trager \(\frac {4 \left (x^{5}+1\right )^{\frac {3}{4}} \left (14 x^{10}-11 x^{9}+28 x^{5}-11 x^{4}+14\right )}{77 x^{11}}\) \(35\)
gosper \(\frac {4 \left (x^{4}-x^{3}+x^{2}-x +1\right ) \left (1+x \right ) \left (14 x^{5}-11 x^{4}+14\right ) \left (x^{5}+1\right )^{\frac {3}{4}}}{77 x^{11}}\) \(44\)
risch \(\frac {\frac {8}{11} x^{15}+\frac {24}{11} x^{10}+\frac {24}{11} x^{5}+\frac {8}{11}-\frac {4}{7} x^{14}-\frac {8}{7} x^{9}-\frac {4}{7} x^{4}}{x^{11} \left (x^{5}+1\right )^{\frac {1}{4}}}\) \(45\)
meijerg \(\frac {\operatorname {hypergeom}\left (\left [-\frac {6}{5}, -\frac {3}{4}\right ], \left [-\frac {1}{5}\right ], -x^{5}\right )}{x^{6}}-\frac {4 \operatorname {hypergeom}\left (\left [-\frac {7}{5}, -\frac {3}{4}\right ], \left [-\frac {2}{5}\right ], -x^{5}\right )}{7 x^{7}}+\frac {8 \operatorname {hypergeom}\left (\left [-\frac {11}{5}, -\frac {3}{4}\right ], \left [-\frac {6}{5}\right ], -x^{5}\right )}{11 x^{11}}-\frac {2 \operatorname {hypergeom}\left (\left [-\frac {3}{4}, -\frac {1}{5}\right ], \left [\frac {4}{5}\right ], -x^{5}\right )}{x}+\frac {\operatorname {hypergeom}\left (\left [-\frac {3}{4}, -\frac {2}{5}\right ], \left [\frac {3}{5}\right ], -x^{5}\right )}{2 x^{2}}\) \(81\)

input
int((x^5-4)*(x^5+1)^(3/4)*(2*x^5-x^4+2)/x^12,x,method=_RETURNVERBOSE)
 
output
8/11*(x^5-11/14*x^4+1)*(x^5+1)^(7/4)/x^11
 
3.5.88.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.89 \[ \int \frac {\left (-4+x^5\right ) \left (1+x^5\right )^{3/4} \left (2-x^4+2 x^5\right )}{x^{12}} \, dx=\frac {4 \, {\left (14 \, x^{10} - 11 \, x^{9} + 28 \, x^{5} - 11 \, x^{4} + 14\right )} {\left (x^{5} + 1\right )}^{\frac {3}{4}}}{77 \, x^{11}} \]

input
integrate((x^5-4)*(x^5+1)^(3/4)*(2*x^5-x^4+2)/x^12,x, algorithm="fricas")
 
output
4/77*(14*x^10 - 11*x^9 + 28*x^5 - 11*x^4 + 14)*(x^5 + 1)^(3/4)/x^11
 
3.5.88.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.04 (sec) , antiderivative size = 192, normalized size of antiderivative = 5.05 \[ \int \frac {\left (-4+x^5\right ) \left (1+x^5\right )^{3/4} \left (2-x^4+2 x^5\right )}{x^{12}} \, dx=\frac {2 \Gamma \left (- \frac {1}{5}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, - \frac {1}{5} \\ \frac {4}{5} \end {matrix}\middle | {x^{5} e^{i \pi }} \right )}}{5 x \Gamma \left (\frac {4}{5}\right )} - \frac {\Gamma \left (- \frac {2}{5}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, - \frac {2}{5} \\ \frac {3}{5} \end {matrix}\middle | {x^{5} e^{i \pi }} \right )}}{5 x^{2} \Gamma \left (\frac {3}{5}\right )} - \frac {6 \Gamma \left (- \frac {6}{5}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {6}{5}, - \frac {3}{4} \\ - \frac {1}{5} \end {matrix}\middle | {x^{5} e^{i \pi }} \right )}}{5 x^{6} \Gamma \left (- \frac {1}{5}\right )} + \frac {4 \Gamma \left (- \frac {7}{5}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {7}{5}, - \frac {3}{4} \\ - \frac {2}{5} \end {matrix}\middle | {x^{5} e^{i \pi }} \right )}}{5 x^{7} \Gamma \left (- \frac {2}{5}\right )} - \frac {8 \Gamma \left (- \frac {11}{5}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {11}{5}, - \frac {3}{4} \\ - \frac {6}{5} \end {matrix}\middle | {x^{5} e^{i \pi }} \right )}}{5 x^{11} \Gamma \left (- \frac {6}{5}\right )} \]

input
integrate((x**5-4)*(x**5+1)**(3/4)*(2*x**5-x**4+2)/x**12,x)
 
output
2*gamma(-1/5)*hyper((-3/4, -1/5), (4/5,), x**5*exp_polar(I*pi))/(5*x*gamma 
(4/5)) - gamma(-2/5)*hyper((-3/4, -2/5), (3/5,), x**5*exp_polar(I*pi))/(5* 
x**2*gamma(3/5)) - 6*gamma(-6/5)*hyper((-6/5, -3/4), (-1/5,), x**5*exp_pol 
ar(I*pi))/(5*x**6*gamma(-1/5)) + 4*gamma(-7/5)*hyper((-7/5, -3/4), (-2/5,) 
, x**5*exp_polar(I*pi))/(5*x**7*gamma(-2/5)) - 8*gamma(-11/5)*hyper((-11/5 
, -3/4), (-6/5,), x**5*exp_polar(I*pi))/(5*x**11*gamma(-6/5))
 
3.5.88.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 50, normalized size of antiderivative = 1.32 \[ \int \frac {\left (-4+x^5\right ) \left (1+x^5\right )^{3/4} \left (2-x^4+2 x^5\right )}{x^{12}} \, dx=\frac {4 \, {\left (14 \, x^{10} - 11 \, x^{9} + 28 \, x^{5} - 11 \, x^{4} + 14\right )} {\left (x^{4} - x^{3} + x^{2} - x + 1\right )}^{\frac {3}{4}} {\left (x + 1\right )}^{\frac {3}{4}}}{77 \, x^{11}} \]

input
integrate((x^5-4)*(x^5+1)^(3/4)*(2*x^5-x^4+2)/x^12,x, algorithm="maxima")
 
output
4/77*(14*x^10 - 11*x^9 + 28*x^5 - 11*x^4 + 14)*(x^4 - x^3 + x^2 - x + 1)^( 
3/4)*(x + 1)^(3/4)/x^11
 
3.5.88.8 Giac [F]

\[ \int \frac {\left (-4+x^5\right ) \left (1+x^5\right )^{3/4} \left (2-x^4+2 x^5\right )}{x^{12}} \, dx=\int { \frac {{\left (2 \, x^{5} - x^{4} + 2\right )} {\left (x^{5} + 1\right )}^{\frac {3}{4}} {\left (x^{5} - 4\right )}}{x^{12}} \,d x } \]

input
integrate((x^5-4)*(x^5+1)^(3/4)*(2*x^5-x^4+2)/x^12,x, algorithm="giac")
 
output
integrate((2*x^5 - x^4 + 2)*(x^5 + 1)^(3/4)*(x^5 - 4)/x^12, x)
 
3.5.88.9 Mupad [B] (verification not implemented)

Time = 5.75 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.61 \[ \int \frac {\left (-4+x^5\right ) \left (1+x^5\right )^{3/4} \left (2-x^4+2 x^5\right )}{x^{12}} \, dx=\frac {8\,{\left (x^5+1\right )}^{3/4}}{11\,x}-\frac {4\,{\left (x^5+1\right )}^{3/4}}{7\,x^2}+\frac {16\,{\left (x^5+1\right )}^{3/4}}{11\,x^6}-\frac {4\,{\left (x^5+1\right )}^{3/4}}{7\,x^7}+\frac {8\,{\left (x^5+1\right )}^{3/4}}{11\,x^{11}} \]

input
int(((x^5 + 1)^(3/4)*(x^5 - 4)*(2*x^5 - x^4 + 2))/x^12,x)
 
output
(8*(x^5 + 1)^(3/4))/(11*x) - (4*(x^5 + 1)^(3/4))/(7*x^2) + (16*(x^5 + 1)^( 
3/4))/(11*x^6) - (4*(x^5 + 1)^(3/4))/(7*x^7) + (8*(x^5 + 1)^(3/4))/(11*x^1 
1)