3.7.12 \(\int \frac {(-3+x^4) (1-2 x^3+x^4) (1-x^3+x^4)}{x^6 (1+x^4) \sqrt [4]{x+x^5}} \, dx\) [612]

3.7.12.1 Optimal result
3.7.12.2 Mathematica [C] (verified)
3.7.12.3 Rubi [A] (verified)
3.7.12.4 Maple [A] (verified)
3.7.12.5 Fricas [A] (verification not implemented)
3.7.12.6 Sympy [F]
3.7.12.7 Maxima [F]
3.7.12.8 Giac [F]
3.7.12.9 Mupad [B] (verification not implemented)

3.7.12.1 Optimal result

Integrand size = 45, antiderivative size = 48 \[ \int \frac {\left (-3+x^4\right ) \left (1-2 x^3+x^4\right ) \left (1-x^3+x^4\right )}{x^6 \left (1+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\frac {4 \left (x+x^5\right )^{3/4} \left (1-7 x^3+2 x^4-14 x^6-7 x^7+x^8\right )}{7 x^6 \left (1+x^4\right )} \]

output
4/7*(x^5+x)^(3/4)*(x^8-7*x^7-14*x^6+2*x^4-7*x^3+1)/x^6/(x^4+1)
 
3.7.12.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 2 in optimal.

Time = 10.13 (sec) , antiderivative size = 203, normalized size of antiderivative = 4.23 \[ \int \frac {\left (-3+x^4\right ) \left (1-2 x^3+x^4\right ) \left (1-x^3+x^4\right )}{x^6 \left (1+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\frac {4 \sqrt [4]{1+x^4} \left (129789 \operatorname {Hypergeometric2F1}\left (-\frac {21}{16},\frac {5}{4},-\frac {5}{16},-x^4\right )+x^3 \left (-908523 \operatorname {Hypergeometric2F1}\left (-\frac {9}{16},\frac {5}{4},\frac {7}{16},-x^4\right )+908523 x \operatorname {Hypergeometric2F1}\left (-\frac {5}{16},\frac {5}{4},\frac {11}{16},-x^4\right )-1817046 x^3 \operatorname {Hypergeometric2F1}\left (\frac {3}{16},\frac {5}{4},\frac {19}{16},-x^4\right )+778734 x^4 \operatorname {Hypergeometric2F1}\left (\frac {7}{16},\frac {5}{4},\frac {23}{16},-x^4\right )-82593 x^5 \operatorname {Hypergeometric2F1}\left (\frac {11}{16},\frac {5}{4},\frac {27}{16},-x^4\right )+95634 x^7 \operatorname {Hypergeometric2F1}\left (\frac {19}{16},\frac {5}{4},\frac {35}{16},-x^4\right )-118503 x^8 \operatorname {Hypergeometric2F1}\left (\frac {5}{4},\frac {23}{16},\frac {39}{16},-x^4\right )+33649 x^9 \operatorname {Hypergeometric2F1}\left (\frac {5}{4},\frac {27}{16},\frac {43}{16},-x^4\right )\right )\right )}{908523 x^5 \sqrt [4]{x+x^5}} \]

input
Integrate[((-3 + x^4)*(1 - 2*x^3 + x^4)*(1 - x^3 + x^4))/(x^6*(1 + x^4)*(x 
 + x^5)^(1/4)),x]
 
output
(4*(1 + x^4)^(1/4)*(129789*Hypergeometric2F1[-21/16, 5/4, -5/16, -x^4] + x 
^3*(-908523*Hypergeometric2F1[-9/16, 5/4, 7/16, -x^4] + 908523*x*Hypergeom 
etric2F1[-5/16, 5/4, 11/16, -x^4] - 1817046*x^3*Hypergeometric2F1[3/16, 5/ 
4, 19/16, -x^4] + 778734*x^4*Hypergeometric2F1[7/16, 5/4, 23/16, -x^4] - 8 
2593*x^5*Hypergeometric2F1[11/16, 5/4, 27/16, -x^4] + 95634*x^7*Hypergeome 
tric2F1[19/16, 5/4, 35/16, -x^4] - 118503*x^8*Hypergeometric2F1[5/4, 23/16 
, 39/16, -x^4] + 33649*x^9*Hypergeometric2F1[5/4, 27/16, 43/16, -x^4])))/( 
908523*x^5*(x + x^5)^(1/4))
 
3.7.12.3 Rubi [A] (verified)

Time = 1.21 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.56, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {2467, 25, 2035, 2368, 27, 2372, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^4-3\right ) \left (x^4-2 x^3+1\right ) \left (x^4-x^3+1\right )}{x^6 \left (x^4+1\right ) \sqrt [4]{x^5+x}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{x} \sqrt [4]{x^4+1} \int -\frac {\left (3-x^4\right ) \left (x^4-2 x^3+1\right ) \left (x^4-x^3+1\right )}{x^{25/4} \left (x^4+1\right )^{5/4}}dx}{\sqrt [4]{x^5+x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{x} \sqrt [4]{x^4+1} \int \frac {\left (3-x^4\right ) \left (x^4-2 x^3+1\right ) \left (x^4-x^3+1\right )}{x^{25/4} \left (x^4+1\right )^{5/4}}dx}{\sqrt [4]{x^5+x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^4+1} \int \frac {\left (3-x^4\right ) \left (x^4-2 x^3+1\right ) \left (x^4-x^3+1\right )}{x^{11/2} \left (x^4+1\right )^{5/4}}d\sqrt [4]{x}}{\sqrt [4]{x^5+x}}\)

\(\Big \downarrow \) 2368

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^4+1} \left (\frac {2 x^{3/4}}{\sqrt [4]{x^4+1}}-\frac {1}{4} \int -\frac {4 \left (-x^8+3 x^7+2 x^4-9 x^3+3\right )}{x^{11/2} \sqrt [4]{x^4+1}}d\sqrt [4]{x}\right )}{\sqrt [4]{x^5+x}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^4+1} \left (\int \frac {-x^8+3 x^7+2 x^4-9 x^3+3}{x^{11/2} \sqrt [4]{x^4+1}}d\sqrt [4]{x}+\frac {2 x^{3/4}}{\sqrt [4]{x^4+1}}\right )}{\sqrt [4]{x^5+x}}\)

\(\Big \downarrow \) 2372

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^4+1} \left (\int \left (\frac {3 x^6-9 x^2}{x^{9/2} \sqrt [4]{x^4+1}}+\frac {-x^8+2 x^4+3}{x^{11/2} \sqrt [4]{x^4+1}}\right )d\sqrt [4]{x}+\frac {2 x^{3/4}}{\sqrt [4]{x^4+1}}\right )}{\sqrt [4]{x^5+x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^4+1} \left (-\frac {\left (x^4+1\right )^{7/4}}{7 x^{21/4}}+\frac {\left (x^4+1\right )^{3/4}}{x^{9/4}}+\frac {2 x^{3/4}}{\sqrt [4]{x^4+1}}\right )}{\sqrt [4]{x^5+x}}\)

input
Int[((-3 + x^4)*(1 - 2*x^3 + x^4)*(1 - x^3 + x^4))/(x^6*(1 + x^4)*(x + x^5 
)^(1/4)),x]
 
output
(-4*x^(1/4)*(1 + x^4)^(1/4)*((2*x^(3/4))/(1 + x^4)^(1/4) + (1 + x^4)^(3/4) 
/x^(9/4) - (1 + x^4)^(7/4)/(7*x^(21/4))))/(x + x^5)^(1/4)
 

3.7.12.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2368
Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = 
Expon[Pq, x]}, Module[{Q = PolynomialQuotient[a*b^(Floor[(q - 1)/n] + 1)*x^ 
m*Pq, a + b*x^n, x], R = PolynomialRemainder[a*b^(Floor[(q - 1)/n] + 1)*x^m 
*Pq, a + b*x^n, x], i}, Simp[(-x)*R*((a + b*x^n)^(p + 1)/(a^2*n*(p + 1)*b^( 
Floor[(q - 1)/n] + 1))), x] + Simp[1/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1)) 
   Int[x^m*(a + b*x^n)^(p + 1)*ExpandToSum[(n*(p + 1)*Q)/x^m + Sum[((n*(p + 
 1) + i + 1)/a)*Coeff[R, x, i]*x^(i - m), {i, 0, n - 1}], x], x], x]]] /; F 
reeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && ILtQ[m, 0]
 

rule 2372
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Mo 
dule[{q = Expon[Pq, x], j, k}, Int[Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, 
 j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, 
 n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0 
] &&  !PolyQ[Pq, x^(n/2)]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 
3.7.12.4 Maple [A] (verified)

Time = 1.22 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.79

method result size
gosper \(\frac {\frac {4}{7} x^{8}+\frac {8}{7} x^{4}+\frac {4}{7}-8 x^{6}-4 x^{7}-4 x^{3}}{\left (x^{5}+x \right )^{\frac {1}{4}} x^{5}}\) \(38\)
risch \(\frac {\frac {4}{7} x^{8}+\frac {8}{7} x^{4}+\frac {4}{7}-8 x^{6}-4 x^{7}-4 x^{3}}{x^{5} {\left (x \left (x^{4}+1\right )\right )}^{\frac {1}{4}}}\) \(40\)
pseudoelliptic \(\frac {\frac {4}{7} x^{8}+\frac {8}{7} x^{4}+\frac {4}{7}-8 x^{6}-4 x^{7}-4 x^{3}}{x^{5} {\left (x \left (x^{4}+1\right )\right )}^{\frac {1}{4}}}\) \(40\)
trager \(\frac {4 \left (x^{5}+x \right )^{\frac {3}{4}} \left (x^{8}-7 x^{7}-14 x^{6}+2 x^{4}-7 x^{3}+1\right )}{7 x^{6} \left (x^{4}+1\right )}\) \(45\)
meijerg \(\frac {4 \operatorname {hypergeom}\left (\left [-\frac {21}{16}, \frac {5}{4}\right ], \left [-\frac {5}{16}\right ], -x^{4}\right )}{7 x^{\frac {21}{4}}}+\frac {4 \operatorname {hypergeom}\left (\left [-\frac {5}{16}, \frac {5}{4}\right ], \left [\frac {11}{16}\right ], -x^{4}\right )}{x^{\frac {5}{4}}}-\frac {4 \operatorname {hypergeom}\left (\left [-\frac {9}{16}, \frac {5}{4}\right ], \left [\frac {7}{16}\right ], -x^{4}\right )}{x^{\frac {9}{4}}}-\frac {4 x^{\frac {11}{4}} \operatorname {hypergeom}\left (\left [\frac {11}{16}, \frac {5}{4}\right ], \left [\frac {27}{16}\right ], -x^{4}\right )}{11}+\frac {24 x^{\frac {7}{4}} \operatorname {hypergeom}\left (\left [\frac {7}{16}, \frac {5}{4}\right ], \left [\frac {23}{16}\right ], -x^{4}\right )}{7}-8 x^{\frac {3}{4}} \operatorname {hypergeom}\left (\left [\frac {3}{16}, \frac {5}{4}\right ], \left [\frac {19}{16}\right ], -x^{4}\right )+\frac {4 x^{\frac {27}{4}} \operatorname {hypergeom}\left (\left [\frac {5}{4}, \frac {27}{16}\right ], \left [\frac {43}{16}\right ], -x^{4}\right )}{27}-\frac {12 x^{\frac {23}{4}} \operatorname {hypergeom}\left (\left [\frac {5}{4}, \frac {23}{16}\right ], \left [\frac {39}{16}\right ], -x^{4}\right )}{23}+\frac {8 x^{\frac {19}{4}} \operatorname {hypergeom}\left (\left [\frac {19}{16}, \frac {5}{4}\right ], \left [\frac {35}{16}\right ], -x^{4}\right )}{19}\) \(146\)

input
int((x^4-3)*(x^4-2*x^3+1)*(x^4-x^3+1)/x^6/(x^4+1)/(x^5+x)^(1/4),x,method=_ 
RETURNVERBOSE)
 
output
4/7*(x^8-7*x^7-14*x^6+2*x^4-7*x^3+1)/(x^5+x)^(1/4)/x^5
 
3.7.12.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.90 \[ \int \frac {\left (-3+x^4\right ) \left (1-2 x^3+x^4\right ) \left (1-x^3+x^4\right )}{x^6 \left (1+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\frac {4 \, {\left (x^{8} - 7 \, x^{7} - 14 \, x^{6} + 2 \, x^{4} - 7 \, x^{3} + 1\right )} {\left (x^{5} + x\right )}^{\frac {3}{4}}}{7 \, {\left (x^{10} + x^{6}\right )}} \]

input
integrate((x^4-3)*(x^4-2*x^3+1)*(x^4-x^3+1)/x^6/(x^4+1)/(x^5+x)^(1/4),x, a 
lgorithm="fricas")
 
output
4/7*(x^8 - 7*x^7 - 14*x^6 + 2*x^4 - 7*x^3 + 1)*(x^5 + x)^(3/4)/(x^10 + x^6 
)
 
3.7.12.6 Sympy [F]

\[ \int \frac {\left (-3+x^4\right ) \left (1-2 x^3+x^4\right ) \left (1-x^3+x^4\right )}{x^6 \left (1+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int \frac {\left (x - 1\right ) \left (x^{4} - 3\right ) \left (x^{4} - x^{3} + 1\right ) \left (x^{3} - x^{2} - x - 1\right )}{x^{6} \sqrt [4]{x \left (x^{4} + 1\right )} \left (x^{4} + 1\right )}\, dx \]

input
integrate((x**4-3)*(x**4-2*x**3+1)*(x**4-x**3+1)/x**6/(x**4+1)/(x**5+x)**( 
1/4),x)
 
output
Integral((x - 1)*(x**4 - 3)*(x**4 - x**3 + 1)*(x**3 - x**2 - x - 1)/(x**6* 
(x*(x**4 + 1))**(1/4)*(x**4 + 1)), x)
 
3.7.12.7 Maxima [F]

\[ \int \frac {\left (-3+x^4\right ) \left (1-2 x^3+x^4\right ) \left (1-x^3+x^4\right )}{x^6 \left (1+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int { \frac {{\left (x^{4} - x^{3} + 1\right )} {\left (x^{4} - 2 \, x^{3} + 1\right )} {\left (x^{4} - 3\right )}}{{\left (x^{5} + x\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )} x^{6}} \,d x } \]

input
integrate((x^4-3)*(x^4-2*x^3+1)*(x^4-x^3+1)/x^6/(x^4+1)/(x^5+x)^(1/4),x, a 
lgorithm="maxima")
 
output
integrate((x^4 - x^3 + 1)*(x^4 - 2*x^3 + 1)*(x^4 - 3)/((x^5 + x)^(1/4)*(x^ 
4 + 1)*x^6), x)
 
3.7.12.8 Giac [F]

\[ \int \frac {\left (-3+x^4\right ) \left (1-2 x^3+x^4\right ) \left (1-x^3+x^4\right )}{x^6 \left (1+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int { \frac {{\left (x^{4} - x^{3} + 1\right )} {\left (x^{4} - 2 \, x^{3} + 1\right )} {\left (x^{4} - 3\right )}}{{\left (x^{5} + x\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )} x^{6}} \,d x } \]

input
integrate((x^4-3)*(x^4-2*x^3+1)*(x^4-x^3+1)/x^6/(x^4+1)/(x^5+x)^(1/4),x, a 
lgorithm="giac")
 
output
integrate((x^4 - x^3 + 1)*(x^4 - 2*x^3 + 1)*(x^4 - 3)/((x^5 + x)^(1/4)*(x^ 
4 + 1)*x^6), x)
 
3.7.12.9 Mupad [B] (verification not implemented)

Time = 5.78 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.10 \[ \int \frac {\left (-3+x^4\right ) \left (1-2 x^3+x^4\right ) \left (1-x^3+x^4\right )}{x^6 \left (1+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\frac {4\,{\left (x^5+x\right )}^{3/4}}{7\,x^2}-\frac {8\,{\left (x^5+x\right )}^{3/4}}{x^4+1}-\frac {4\,{\left (x^5+x\right )}^{3/4}}{x^3}+\frac {4\,{\left (x^5+x\right )}^{3/4}}{7\,x^6} \]

input
int(((x^4 - 3)*(x^4 - x^3 + 1)*(x^4 - 2*x^3 + 1))/(x^6*(x^4 + 1)*(x + x^5) 
^(1/4)),x)
 
output
(4*(x + x^5)^(3/4))/(7*x^2) - (8*(x + x^5)^(3/4))/(x^4 + 1) - (4*(x + x^5) 
^(3/4))/x^3 + (4*(x + x^5)^(3/4))/(7*x^6)