3.7.24 \(\int \frac {1}{(-2+x^4) \sqrt [4]{x^2+x^4}} \, dx\) [624]

3.7.24.1 Optimal result
3.7.24.2 Mathematica [A] (verified)
3.7.24.3 Rubi [B] (verified)
3.7.24.4 Maple [N/A] (verified)
3.7.24.5 Fricas [C] (verification not implemented)
3.7.24.6 Sympy [N/A]
3.7.24.7 Maxima [N/A]
3.7.24.8 Giac [N/A]
3.7.24.9 Mupad [N/A]

3.7.24.1 Optimal result

Integrand size = 19, antiderivative size = 49 \[ \int \frac {1}{\left (-2+x^4\right ) \sqrt [4]{x^2+x^4}} \, dx=\frac {1}{8} \text {RootSum}\left [1-4 \text {$\#$1}^4+2 \text {$\#$1}^8\&,\frac {-\log (x)+\log \left (\sqrt [4]{x^2+x^4}-x \text {$\#$1}\right )}{\text {$\#$1}}\&\right ] \]

output
Unintegrable
 
3.7.24.2 Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.63 \[ \int \frac {1}{\left (-2+x^4\right ) \sqrt [4]{x^2+x^4}} \, dx=\frac {\sqrt {x} \sqrt [4]{1+x^2} \text {RootSum}\left [1-4 \text {$\#$1}^4+2 \text {$\#$1}^8\&,\frac {-\log \left (\sqrt {x}\right )+\log \left (\sqrt [4]{1+x^2}-\sqrt {x} \text {$\#$1}\right )}{\text {$\#$1}}\&\right ]}{8 \sqrt [4]{x^2+x^4}} \]

input
Integrate[1/((-2 + x^4)*(x^2 + x^4)^(1/4)),x]
 
output
(Sqrt[x]*(1 + x^2)^(1/4)*RootSum[1 - 4*#1^4 + 2*#1^8 & , (-Log[Sqrt[x]] + 
Log[(1 + x^2)^(1/4) - Sqrt[x]*#1])/#1 & ])/(8*(x^2 + x^4)^(1/4))
 
3.7.24.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(244\) vs. \(2(49)=98\).

Time = 0.42 (sec) , antiderivative size = 244, normalized size of antiderivative = 4.98, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.421, Rules used = {2467, 25, 1593, 1759, 902, 756, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (x^4-2\right ) \sqrt [4]{x^4+x^2}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{x^2+1} \int -\frac {1}{\sqrt {x} \sqrt [4]{x^2+1} \left (2-x^4\right )}dx}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{x^2+1} \int \frac {1}{\sqrt {x} \sqrt [4]{x^2+1} \left (2-x^4\right )}dx}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 1593

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{x^2+1} \int \frac {1}{\sqrt [4]{x^2+1} \left (2-x^4\right )}d\sqrt {x}}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 1759

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{x^2+1} \left (\frac {\int \frac {1}{\left (\sqrt {2}-x^2\right ) \sqrt [4]{x^2+1}}d\sqrt {x}}{2 \sqrt {2}}+\frac {\int \frac {1}{\sqrt [4]{x^2+1} \left (x^2+\sqrt {2}\right )}d\sqrt {x}}{2 \sqrt {2}}\right )}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 902

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{x^2+1} \left (\frac {\int \frac {1}{\sqrt {2}-\left (-1+\sqrt {2}\right ) x^2}d\frac {\sqrt {x}}{\sqrt [4]{x^2+1}}}{2 \sqrt {2}}+\frac {\int \frac {1}{\sqrt {2}-\left (1+\sqrt {2}\right ) x^2}d\frac {\sqrt {x}}{\sqrt [4]{x^2+1}}}{2 \sqrt {2}}\right )}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 756

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{x^2+1} \left (\frac {\frac {1}{2} \sqrt {\frac {1}{2} \left (2-\sqrt {2}\right )} \int \frac {1}{\sqrt {2-\sqrt {2}}-x}d\frac {\sqrt {x}}{\sqrt [4]{x^2+1}}+\frac {1}{2} \sqrt {\frac {1}{2} \left (2-\sqrt {2}\right )} \int \frac {1}{x+\sqrt {2-\sqrt {2}}}d\frac {\sqrt {x}}{\sqrt [4]{x^2+1}}}{2 \sqrt {2}}+\frac {\frac {1}{2} \sqrt {\frac {1}{2} \left (2+\sqrt {2}\right )} \int \frac {1}{\sqrt {2+\sqrt {2}}-x}d\frac {\sqrt {x}}{\sqrt [4]{x^2+1}}+\frac {1}{2} \sqrt {\frac {1}{2} \left (2+\sqrt {2}\right )} \int \frac {1}{x+\sqrt {2+\sqrt {2}}}d\frac {\sqrt {x}}{\sqrt [4]{x^2+1}}}{2 \sqrt {2}}\right )}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{x^2+1} \left (\frac {\frac {1}{2} \sqrt {\frac {1}{2} \left (2-\sqrt {2}\right )} \int \frac {1}{\sqrt {2-\sqrt {2}}-x}d\frac {\sqrt {x}}{\sqrt [4]{x^2+1}}+\frac {\sqrt [4]{2-\sqrt {2}} \arctan \left (\frac {\sqrt {x}}{\sqrt [4]{2-\sqrt {2}} \sqrt [4]{x^2+1}}\right )}{2 \sqrt {2}}}{2 \sqrt {2}}+\frac {\frac {1}{2} \sqrt {\frac {1}{2} \left (2+\sqrt {2}\right )} \int \frac {1}{\sqrt {2+\sqrt {2}}-x}d\frac {\sqrt {x}}{\sqrt [4]{x^2+1}}+\frac {\sqrt [4]{2+\sqrt {2}} \arctan \left (\frac {\sqrt {x}}{\sqrt [4]{2+\sqrt {2}} \sqrt [4]{x^2+1}}\right )}{2 \sqrt {2}}}{2 \sqrt {2}}\right )}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{x^2+1} \left (\frac {\frac {\sqrt [4]{2-\sqrt {2}} \arctan \left (\frac {\sqrt {x}}{\sqrt [4]{2-\sqrt {2}} \sqrt [4]{x^2+1}}\right )}{2 \sqrt {2}}+\frac {\sqrt [4]{2-\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {x}}{\sqrt [4]{2-\sqrt {2}} \sqrt [4]{x^2+1}}\right )}{2 \sqrt {2}}}{2 \sqrt {2}}+\frac {\frac {\sqrt [4]{2+\sqrt {2}} \arctan \left (\frac {\sqrt {x}}{\sqrt [4]{2+\sqrt {2}} \sqrt [4]{x^2+1}}\right )}{2 \sqrt {2}}+\frac {\sqrt [4]{2+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {x}}{\sqrt [4]{2+\sqrt {2}} \sqrt [4]{x^2+1}}\right )}{2 \sqrt {2}}}{2 \sqrt {2}}\right )}{\sqrt [4]{x^4+x^2}}\)

input
Int[1/((-2 + x^4)*(x^2 + x^4)^(1/4)),x]
 
output
(-2*Sqrt[x]*(1 + x^2)^(1/4)*((((2 - Sqrt[2])^(1/4)*ArcTan[Sqrt[x]/((2 - Sq 
rt[2])^(1/4)*(1 + x^2)^(1/4))])/(2*Sqrt[2]) + ((2 - Sqrt[2])^(1/4)*ArcTanh 
[Sqrt[x]/((2 - Sqrt[2])^(1/4)*(1 + x^2)^(1/4))])/(2*Sqrt[2]))/(2*Sqrt[2]) 
+ (((2 + Sqrt[2])^(1/4)*ArcTan[Sqrt[x]/((2 + Sqrt[2])^(1/4)*(1 + x^2)^(1/4 
))])/(2*Sqrt[2]) + ((2 + Sqrt[2])^(1/4)*ArcTanh[Sqrt[x]/((2 + Sqrt[2])^(1/ 
4)*(1 + x^2)^(1/4))])/(2*Sqrt[2]))/(2*Sqrt[2])))/(x^2 + x^4)^(1/4)
 

3.7.24.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 902
Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Su 
bst[Int[1/(c - (b*c - a*d)*x^n), x], x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b 
, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]
 

rule 1593
Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_ 
), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/f   Subst[Int[x^(k*(m + 1 
) - 1)*(d + e*(x^(2*k)/f))^q*(a + c*(x^(4*k)/f))^p, x], x, (f*x)^(1/k)], x] 
] /; FreeQ[{a, c, d, e, f, p, q}, x] && FractionQ[m] && IntegerQ[p]
 

rule 1759
Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> W 
ith[{r = Rt[(-a)*c, 2]}, Simp[-c/(2*r)   Int[(d + e*x^n)^q/(r - c*x^n), x], 
 x] - Simp[c/(2*r)   Int[(d + e*x^n)^q/(r + c*x^n), x], x]] /; FreeQ[{a, c, 
 d, e, n, q}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[q]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 
3.7.24.4 Maple [N/A] (verified)

Time = 50.78 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.90

method result size
pseudoelliptic \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (2 \textit {\_Z}^{8}-4 \textit {\_Z}^{4}+1\right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}}\right )}{8}\) \(44\)
trager \(\text {Expression too large to display}\) \(3668\)

input
int(1/(x^4-2)/(x^4+x^2)^(1/4),x,method=_RETURNVERBOSE)
 
output
1/8*sum(ln((-_R*x+(x^2*(x^2+1))^(1/4))/x)/_R,_R=RootOf(2*_Z^8-4*_Z^4+1))
 
3.7.24.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 3.01 (sec) , antiderivative size = 1477, normalized size of antiderivative = 30.14 \[ \int \frac {1}{\left (-2+x^4\right ) \sqrt [4]{x^2+x^4}} \, dx=\text {Too large to display} \]

input
integrate(1/(x^4-2)/(x^4+x^2)^(1/4),x, algorithm="fricas")
 
output
-1/16*sqrt(-sqrt(-sqrt(2) + 2))*log((4*(x^4 + x^2)^(3/4)*(11*x^2 + sqrt(2) 
*(6*x^2 + 11) + 12) - 2*(34*x^4 + 46*x^2 + sqrt(2)*(23*x^4 + 34*x^2))*(x^4 
 + x^2)^(1/4)*sqrt(-sqrt(2) + 2) + (56*x^5 + 92*x^3 - 2*sqrt(x^4 + x^2)*(3 
4*x^3 + sqrt(2)*(23*x^3 + 34*x) + 46*x)*sqrt(-sqrt(2) + 2) + sqrt(2)*(35*x 
^5 + 68*x^3 + 22*x) + 24*x)*sqrt(-sqrt(-sqrt(2) + 2)))/(x^5 - 2*x)) + 1/16 
*sqrt(-sqrt(-sqrt(2) + 2))*log((4*(x^4 + x^2)^(3/4)*(11*x^2 + sqrt(2)*(6*x 
^2 + 11) + 12) - 2*(34*x^4 + 46*x^2 + sqrt(2)*(23*x^4 + 34*x^2))*(x^4 + x^ 
2)^(1/4)*sqrt(-sqrt(2) + 2) - (56*x^5 + 92*x^3 - 2*sqrt(x^4 + x^2)*(34*x^3 
 + sqrt(2)*(23*x^3 + 34*x) + 46*x)*sqrt(-sqrt(2) + 2) + sqrt(2)*(35*x^5 + 
68*x^3 + 22*x) + 24*x)*sqrt(-sqrt(-sqrt(2) + 2)))/(x^5 - 2*x)) - 1/16*sqrt 
(-sqrt(sqrt(2) + 2))*log((4*(x^4 + x^2)^(3/4)*(11*x^2 - sqrt(2)*(6*x^2 + 1 
1) + 12) - 2*(34*x^4 + 46*x^2 - sqrt(2)*(23*x^4 + 34*x^2))*(x^4 + x^2)^(1/ 
4)*sqrt(sqrt(2) + 2) + (56*x^5 + 92*x^3 - 2*sqrt(x^4 + x^2)*(34*x^3 - sqrt 
(2)*(23*x^3 + 34*x) + 46*x)*sqrt(sqrt(2) + 2) - sqrt(2)*(35*x^5 + 68*x^3 + 
 22*x) + 24*x)*sqrt(-sqrt(sqrt(2) + 2)))/(x^5 - 2*x)) + 1/16*sqrt(-sqrt(sq 
rt(2) + 2))*log((4*(x^4 + x^2)^(3/4)*(11*x^2 - sqrt(2)*(6*x^2 + 11) + 12) 
- 2*(34*x^4 + 46*x^2 - sqrt(2)*(23*x^4 + 34*x^2))*(x^4 + x^2)^(1/4)*sqrt(s 
qrt(2) + 2) - (56*x^5 + 92*x^3 - 2*sqrt(x^4 + x^2)*(34*x^3 - sqrt(2)*(23*x 
^3 + 34*x) + 46*x)*sqrt(sqrt(2) + 2) - sqrt(2)*(35*x^5 + 68*x^3 + 22*x) + 
24*x)*sqrt(-sqrt(sqrt(2) + 2)))/(x^5 - 2*x)) - 1/16*(-sqrt(2) + 2)^(1/4...
 
3.7.24.6 Sympy [N/A]

Not integrable

Time = 0.97 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.39 \[ \int \frac {1}{\left (-2+x^4\right ) \sqrt [4]{x^2+x^4}} \, dx=\int \frac {1}{\sqrt [4]{x^{2} \left (x^{2} + 1\right )} \left (x^{4} - 2\right )}\, dx \]

input
integrate(1/(x**4-2)/(x**4+x**2)**(1/4),x)
 
output
Integral(1/((x**2*(x**2 + 1))**(1/4)*(x**4 - 2)), x)
 
3.7.24.7 Maxima [N/A]

Not integrable

Time = 0.29 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.43 \[ \int \frac {1}{\left (-2+x^4\right ) \sqrt [4]{x^2+x^4}} \, dx=\int { \frac {1}{{\left (x^{4} + x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} - 2\right )}} \,d x } \]

input
integrate(1/(x^4-2)/(x^4+x^2)^(1/4),x, algorithm="maxima")
 
output
2/21*(4*x^5 + x^3 - 3*x)/((x^(9/2) - 2*sqrt(x))*(x^2 + 1)^(1/4)) + integra 
te(16/21*(4*x^4 + x^2 - 3)/((x^(17/2) - 4*x^(9/2) + 4*sqrt(x))*(x^2 + 1)^( 
1/4)), x)
 
3.7.24.8 Giac [N/A]

Not integrable

Time = 0.32 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.39 \[ \int \frac {1}{\left (-2+x^4\right ) \sqrt [4]{x^2+x^4}} \, dx=\int { \frac {1}{{\left (x^{4} + x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} - 2\right )}} \,d x } \]

input
integrate(1/(x^4-2)/(x^4+x^2)^(1/4),x, algorithm="giac")
 
output
integrate(1/((x^4 + x^2)^(1/4)*(x^4 - 2)), x)
 
3.7.24.9 Mupad [N/A]

Not integrable

Time = 5.57 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.39 \[ \int \frac {1}{\left (-2+x^4\right ) \sqrt [4]{x^2+x^4}} \, dx=\int \frac {1}{{\left (x^4+x^2\right )}^{1/4}\,\left (x^4-2\right )} \,d x \]

input
int(1/((x^2 + x^4)^(1/4)*(x^4 - 2)),x)
 
output
int(1/((x^2 + x^4)^(1/4)*(x^4 - 2)), x)