3.7.67 \(\int \frac {x^2}{(-1+x^4) \sqrt {1+x^4}} \, dx\) [667]

3.7.67.1 Optimal result
3.7.67.2 Mathematica [A] (verified)
3.7.67.3 Rubi [C] (verified)
3.7.67.4 Maple [A] (verified)
3.7.67.5 Fricas [A] (verification not implemented)
3.7.67.6 Sympy [F]
3.7.67.7 Maxima [F]
3.7.67.8 Giac [F]
3.7.67.9 Mupad [F(-1)]

3.7.67.1 Optimal result

Integrand size = 20, antiderivative size = 53 \[ \int \frac {x^2}{\left (-1+x^4\right ) \sqrt {1+x^4}} \, dx=\frac {\arctan \left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{4 \sqrt {2}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{4 \sqrt {2}} \]

output
1/8*arctan(2^(1/2)*x/(x^4+1)^(1/2))*2^(1/2)-1/8*arctanh(2^(1/2)*x/(x^4+1)^ 
(1/2))*2^(1/2)
 
3.7.67.2 Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.87 \[ \int \frac {x^2}{\left (-1+x^4\right ) \sqrt {1+x^4}} \, dx=\frac {\arctan \left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )-\text {arctanh}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{4 \sqrt {2}} \]

input
Integrate[x^2/((-1 + x^4)*Sqrt[1 + x^4]),x]
 
output
(ArcTan[(Sqrt[2]*x)/Sqrt[1 + x^4]] - ArcTanh[(Sqrt[2]*x)/Sqrt[1 + x^4]])/( 
4*Sqrt[2])
 
3.7.67.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 0.37 (sec) , antiderivative size = 149, normalized size of antiderivative = 2.81, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {993, 1535, 761, 2213, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (x^4-1\right ) \sqrt {x^4+1}} \, dx\)

\(\Big \downarrow \) 993

\(\displaystyle \frac {1}{2} \int \frac {1}{\left (x^2+1\right ) \sqrt {x^4+1}}dx-\frac {1}{2} \int \frac {1}{\left (1-x^2\right ) \sqrt {x^4+1}}dx\)

\(\Big \downarrow \) 1535

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\sqrt {x^4+1}}dx+\frac {1}{2} \int \frac {1-x^2}{\left (x^2+1\right ) \sqrt {x^4+1}}dx\right )+\frac {1}{2} \left (-\frac {1}{2} \int \frac {1}{\sqrt {x^4+1}}dx-\frac {1}{2} \int \frac {x^2+1}{\left (1-x^2\right ) \sqrt {x^4+1}}dx\right )\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \int \frac {1-x^2}{\left (x^2+1\right ) \sqrt {x^4+1}}dx+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{4 \sqrt {x^4+1}}\right )+\frac {1}{2} \left (-\frac {1}{2} \int \frac {x^2+1}{\left (1-x^2\right ) \sqrt {x^4+1}}dx-\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{4 \sqrt {x^4+1}}\right )\)

\(\Big \downarrow \) 2213

\(\displaystyle \frac {1}{2} \left (-\frac {1}{2} \int \frac {1}{1-\frac {2 x^2}{x^4+1}}d\frac {x}{\sqrt {x^4+1}}-\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{4 \sqrt {x^4+1}}\right )+\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\frac {2 x^2}{x^4+1}+1}d\frac {x}{\sqrt {x^4+1}}+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{4 \sqrt {x^4+1}}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{2} \left (-\frac {1}{2} \int \frac {1}{1-\frac {2 x^2}{x^4+1}}d\frac {x}{\sqrt {x^4+1}}-\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{4 \sqrt {x^4+1}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{2 \sqrt {2}}+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{4 \sqrt {x^4+1}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (-\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{4 \sqrt {x^4+1}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{2 \sqrt {2}}+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{4 \sqrt {x^4+1}}\right )\)

input
Int[x^2/((-1 + x^4)*Sqrt[1 + x^4]),x]
 
output
(-1/2*ArcTanh[(Sqrt[2]*x)/Sqrt[1 + x^4]]/Sqrt[2] - ((1 + x^2)*Sqrt[(1 + x^ 
4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/2])/(4*Sqrt[1 + x^4]))/2 + (ArcTa 
n[(Sqrt[2]*x)/Sqrt[1 + x^4]]/(2*Sqrt[2]) + ((1 + x^2)*Sqrt[(1 + x^4)/(1 + 
x^2)^2]*EllipticF[2*ArcTan[x], 1/2])/(4*Sqrt[1 + x^4]))/2
 

3.7.67.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 993
Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> 
With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2* 
b)   Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Simp[s/(2*b)   Int[1/((r 
 - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
a*d, 0]
 

rule 1535
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[ 
1/(2*d)   Int[1/Sqrt[a + c*x^4], x], x] + Simp[1/(2*d)   Int[(d - e*x^2)/(( 
d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 
+ a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0]
 

rule 2213
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> Simp[A   Subst[Int[1/(d + 2*a*e*x^2), x], x, x/Sqrt[a + c*x^ 
4]], x] /; FreeQ[{a, c, d, e, A, B}, x] && EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d 
 + A*e, 0]
 
3.7.67.4 Maple [A] (verified)

Time = 2.23 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.81

method result size
elliptic \(\frac {\left (-\frac {\operatorname {arctanh}\left (\frac {\sqrt {2}\, \sqrt {x^{4}+1}}{2 x}\right )}{4}-\frac {\arctan \left (\frac {\sqrt {2}\, \sqrt {x^{4}+1}}{2 x}\right )}{4}\right ) \sqrt {2}}{2}\) \(43\)
default \(\frac {\sqrt {2}\, \left (2 \arctan \left (\frac {\sqrt {2}\, x}{\sqrt {x^{4}+1}}\right )+\operatorname {arctanh}\left (\frac {\left (x^{2}+x +1\right ) \sqrt {2}}{\sqrt {x^{4}+1}}\right )-\operatorname {arctanh}\left (\frac {\left (x^{2}-x +1\right ) \sqrt {2}}{\sqrt {x^{4}+1}}\right )\right )}{16}\) \(62\)
pseudoelliptic \(\frac {\sqrt {2}\, \left (2 \arctan \left (\frac {\sqrt {2}\, x}{\sqrt {x^{4}+1}}\right )+\operatorname {arctanh}\left (\frac {\left (x^{2}+x +1\right ) \sqrt {2}}{\sqrt {x^{4}+1}}\right )-\operatorname {arctanh}\left (\frac {\left (x^{2}-x +1\right ) \sqrt {2}}{\sqrt {x^{4}+1}}\right )\right )}{16}\) \(62\)
trager \(-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x +\sqrt {x^{4}+1}}{\left (x -1\right ) \left (1+x \right )}\right )}{8}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+2\right ) \ln \left (\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}+2\right ) x +\sqrt {x^{4}+1}}{x^{2}+1}\right )}{8}\) \(73\)

input
int(x^2/(x^4-1)/(x^4+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2*(-1/4*arctanh(1/2*2^(1/2)/x*(x^4+1)^(1/2))-1/4*arctan(1/2*2^(1/2)/x*(x 
^4+1)^(1/2)))*2^(1/2)
 
3.7.67.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.15 \[ \int \frac {x^2}{\left (-1+x^4\right ) \sqrt {1+x^4}} \, dx=\frac {1}{8} \, \sqrt {2} \arctan \left (\frac {\sqrt {2} x}{\sqrt {x^{4} + 1}}\right ) + \frac {1}{16} \, \sqrt {2} \log \left (\frac {x^{4} - 2 \, \sqrt {2} \sqrt {x^{4} + 1} x + 2 \, x^{2} + 1}{x^{4} - 2 \, x^{2} + 1}\right ) \]

input
integrate(x^2/(x^4-1)/(x^4+1)^(1/2),x, algorithm="fricas")
 
output
1/8*sqrt(2)*arctan(sqrt(2)*x/sqrt(x^4 + 1)) + 1/16*sqrt(2)*log((x^4 - 2*sq 
rt(2)*sqrt(x^4 + 1)*x + 2*x^2 + 1)/(x^4 - 2*x^2 + 1))
 
3.7.67.6 Sympy [F]

\[ \int \frac {x^2}{\left (-1+x^4\right ) \sqrt {1+x^4}} \, dx=\int \frac {x^{2}}{\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right ) \sqrt {x^{4} + 1}}\, dx \]

input
integrate(x**2/(x**4-1)/(x**4+1)**(1/2),x)
 
output
Integral(x**2/((x - 1)*(x + 1)*(x**2 + 1)*sqrt(x**4 + 1)), x)
 
3.7.67.7 Maxima [F]

\[ \int \frac {x^2}{\left (-1+x^4\right ) \sqrt {1+x^4}} \, dx=\int { \frac {x^{2}}{\sqrt {x^{4} + 1} {\left (x^{4} - 1\right )}} \,d x } \]

input
integrate(x^2/(x^4-1)/(x^4+1)^(1/2),x, algorithm="maxima")
 
output
integrate(x^2/(sqrt(x^4 + 1)*(x^4 - 1)), x)
 
3.7.67.8 Giac [F]

\[ \int \frac {x^2}{\left (-1+x^4\right ) \sqrt {1+x^4}} \, dx=\int { \frac {x^{2}}{\sqrt {x^{4} + 1} {\left (x^{4} - 1\right )}} \,d x } \]

input
integrate(x^2/(x^4-1)/(x^4+1)^(1/2),x, algorithm="giac")
 
output
integrate(x^2/(sqrt(x^4 + 1)*(x^4 - 1)), x)
 
3.7.67.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (-1+x^4\right ) \sqrt {1+x^4}} \, dx=\int \frac {x^2}{\left (x^4-1\right )\,\sqrt {x^4+1}} \,d x \]

input
int(x^2/((x^4 - 1)*(x^4 + 1)^(1/2)),x)
 
output
int(x^2/((x^4 - 1)*(x^4 + 1)^(1/2)), x)