3.8.88 \(\int \frac {x-3 x^5}{\sqrt {x+x^5} (1-a x^2+2 x^4+x^8)} \, dx\) [788]

3.8.88.1 Optimal result
3.8.88.2 Mathematica [F]
3.8.88.3 Rubi [F]
3.8.88.4 Maple [A] (verified)
3.8.88.5 Fricas [C] (verification not implemented)
3.8.88.6 Sympy [F(-1)]
3.8.88.7 Maxima [F]
3.8.88.8 Giac [F]
3.8.88.9 Mupad [B] (verification not implemented)

3.8.88.1 Optimal result

Integrand size = 35, antiderivative size = 60 \[ \int \frac {x-3 x^5}{\sqrt {x+x^5} \left (1-a x^2+2 x^4+x^8\right )} \, dx=-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt {x+x^5}}{1+x^4}\right )}{a^{3/4}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x+x^5}}{1+x^4}\right )}{a^{3/4}} \]

output
-arctan(a^(1/4)*(x^5+x)^(1/2)/(x^4+1))/a^(3/4)+arctanh(a^(1/4)*(x^5+x)^(1/ 
2)/(x^4+1))/a^(3/4)
 
3.8.88.2 Mathematica [F]

\[ \int \frac {x-3 x^5}{\sqrt {x+x^5} \left (1-a x^2+2 x^4+x^8\right )} \, dx=\int \frac {x-3 x^5}{\sqrt {x+x^5} \left (1-a x^2+2 x^4+x^8\right )} \, dx \]

input
Integrate[(x - 3*x^5)/(Sqrt[x + x^5]*(1 - a*x^2 + 2*x^4 + x^8)),x]
 
output
Integrate[(x - 3*x^5)/(Sqrt[x + x^5]*(1 - a*x^2 + 2*x^4 + x^8)), x]
 
3.8.88.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x-3 x^5}{\sqrt {x^5+x} \left (-a x^2+x^8+2 x^4+1\right )} \, dx\)

\(\Big \downarrow \) 2027

\(\displaystyle \int \frac {x \left (1-3 x^4\right )}{\sqrt {x^5+x} \left (-a x^2+x^8+2 x^4+1\right )}dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {x^4+1} \int \frac {\sqrt {x} \left (1-3 x^4\right )}{\sqrt {x^4+1} \left (x^8+2 x^4-a x^2+1\right )}dx}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle \frac {2 \sqrt {x} \sqrt {x^4+1} \int \frac {x \left (1-3 x^4\right )}{\sqrt {x^4+1} \left (x^8+2 x^4-a x^2+1\right )}d\sqrt {x}}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 7293

\(\displaystyle \frac {2 \sqrt {x} \sqrt {x^4+1} \int \left (\frac {x}{\sqrt {x^4+1} \left (x^8+2 x^4-a x^2+1\right )}-\frac {3 x^5}{\sqrt {x^4+1} \left (x^8+2 x^4-a x^2+1\right )}\right )d\sqrt {x}}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \sqrt {x} \sqrt {x^4+1} \left (\int \frac {x}{\sqrt {x^4+1} \left (x^8+2 x^4-a x^2+1\right )}d\sqrt {x}-3 \int \frac {x^5}{\sqrt {x^4+1} \left (x^8+2 x^4-a x^2+1\right )}d\sqrt {x}\right )}{\sqrt {x^5+x}}\)

input
Int[(x - 3*x^5)/(Sqrt[x + x^5]*(1 - a*x^2 + 2*x^4 + x^8)),x]
 
output
$Aborted
 

3.8.88.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2027
Int[(Fx_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(p_.), x_Symbol] :> Int[x^ 
(p*r)*(a + b*x^(s - r))^p*Fx, x] /; FreeQ[{a, b, r, s}, x] && IntegerQ[p] & 
& PosQ[s - r] &&  !(EqQ[p, 1] && EqQ[u, 1])
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.8.88.4 Maple [A] (verified)

Time = 2.76 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.08

method result size
pseudoelliptic \(\frac {\ln \left (\frac {-a^{\frac {1}{4}} x -\sqrt {x \left (x^{4}+1\right )}}{a^{\frac {1}{4}} x -\sqrt {x \left (x^{4}+1\right )}}\right )+2 \arctan \left (\frac {\sqrt {x \left (x^{4}+1\right )}}{x \,a^{\frac {1}{4}}}\right )}{2 a^{\frac {3}{4}}}\) \(65\)

input
int((-3*x^5+x)/(x^5+x)^(1/2)/(x^8+2*x^4-a*x^2+1),x,method=_RETURNVERBOSE)
 
output
1/2/a^(3/4)*(ln((-a^(1/4)*x-(x*(x^4+1))^(1/2))/(a^(1/4)*x-(x*(x^4+1))^(1/2 
)))+2*arctan((x*(x^4+1))^(1/2)/x/a^(1/4)))
 
3.8.88.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.31 (sec) , antiderivative size = 389, normalized size of antiderivative = 6.48 \[ \int \frac {x-3 x^5}{\sqrt {x+x^5} \left (1-a x^2+2 x^4+x^8\right )} \, dx=\frac {1}{4} \, \frac {1}{a^{3}}^{\frac {1}{4}} \log \left (\frac {x^{8} + 2 \, x^{4} + a x^{2} + 2 \, \sqrt {x^{5} + x} {\left (a^{3} \frac {1}{a^{3}}^{\frac {3}{4}} x + {\left (a x^{4} + a\right )} \frac {1}{a^{3}}^{\frac {1}{4}}\right )} + 2 \, {\left (a^{2} x^{5} + a^{2} x\right )} \sqrt {\frac {1}{a^{3}}} + 1}{x^{8} + 2 \, x^{4} - a x^{2} + 1}\right ) - \frac {1}{4} \, \frac {1}{a^{3}}^{\frac {1}{4}} \log \left (\frac {x^{8} + 2 \, x^{4} + a x^{2} - 2 \, \sqrt {x^{5} + x} {\left (a^{3} \frac {1}{a^{3}}^{\frac {3}{4}} x + {\left (a x^{4} + a\right )} \frac {1}{a^{3}}^{\frac {1}{4}}\right )} + 2 \, {\left (a^{2} x^{5} + a^{2} x\right )} \sqrt {\frac {1}{a^{3}}} + 1}{x^{8} + 2 \, x^{4} - a x^{2} + 1}\right ) + \frac {1}{4} i \, \frac {1}{a^{3}}^{\frac {1}{4}} \log \left (\frac {x^{8} + 2 \, x^{4} + a x^{2} - 2 \, \sqrt {x^{5} + x} {\left (i \, a^{3} \frac {1}{a^{3}}^{\frac {3}{4}} x + {\left (-i \, a x^{4} - i \, a\right )} \frac {1}{a^{3}}^{\frac {1}{4}}\right )} - 2 \, {\left (a^{2} x^{5} + a^{2} x\right )} \sqrt {\frac {1}{a^{3}}} + 1}{x^{8} + 2 \, x^{4} - a x^{2} + 1}\right ) - \frac {1}{4} i \, \frac {1}{a^{3}}^{\frac {1}{4}} \log \left (\frac {x^{8} + 2 \, x^{4} + a x^{2} - 2 \, \sqrt {x^{5} + x} {\left (-i \, a^{3} \frac {1}{a^{3}}^{\frac {3}{4}} x + {\left (i \, a x^{4} + i \, a\right )} \frac {1}{a^{3}}^{\frac {1}{4}}\right )} - 2 \, {\left (a^{2} x^{5} + a^{2} x\right )} \sqrt {\frac {1}{a^{3}}} + 1}{x^{8} + 2 \, x^{4} - a x^{2} + 1}\right ) \]

input
integrate((-3*x^5+x)/(x^5+x)^(1/2)/(x^8+2*x^4-a*x^2+1),x, algorithm="frica 
s")
 
output
1/4*(a^(-3))^(1/4)*log((x^8 + 2*x^4 + a*x^2 + 2*sqrt(x^5 + x)*(a^3*(a^(-3) 
)^(3/4)*x + (a*x^4 + a)*(a^(-3))^(1/4)) + 2*(a^2*x^5 + a^2*x)*sqrt(a^(-3)) 
 + 1)/(x^8 + 2*x^4 - a*x^2 + 1)) - 1/4*(a^(-3))^(1/4)*log((x^8 + 2*x^4 + a 
*x^2 - 2*sqrt(x^5 + x)*(a^3*(a^(-3))^(3/4)*x + (a*x^4 + a)*(a^(-3))^(1/4)) 
 + 2*(a^2*x^5 + a^2*x)*sqrt(a^(-3)) + 1)/(x^8 + 2*x^4 - a*x^2 + 1)) + 1/4* 
I*(a^(-3))^(1/4)*log((x^8 + 2*x^4 + a*x^2 - 2*sqrt(x^5 + x)*(I*a^3*(a^(-3) 
)^(3/4)*x + (-I*a*x^4 - I*a)*(a^(-3))^(1/4)) - 2*(a^2*x^5 + a^2*x)*sqrt(a^ 
(-3)) + 1)/(x^8 + 2*x^4 - a*x^2 + 1)) - 1/4*I*(a^(-3))^(1/4)*log((x^8 + 2* 
x^4 + a*x^2 - 2*sqrt(x^5 + x)*(-I*a^3*(a^(-3))^(3/4)*x + (I*a*x^4 + I*a)*( 
a^(-3))^(1/4)) - 2*(a^2*x^5 + a^2*x)*sqrt(a^(-3)) + 1)/(x^8 + 2*x^4 - a*x^ 
2 + 1))
 
3.8.88.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x-3 x^5}{\sqrt {x+x^5} \left (1-a x^2+2 x^4+x^8\right )} \, dx=\text {Timed out} \]

input
integrate((-3*x**5+x)/(x**5+x)**(1/2)/(x**8+2*x**4-a*x**2+1),x)
 
output
Timed out
 
3.8.88.7 Maxima [F]

\[ \int \frac {x-3 x^5}{\sqrt {x+x^5} \left (1-a x^2+2 x^4+x^8\right )} \, dx=\int { -\frac {3 \, x^{5} - x}{{\left (x^{8} + 2 \, x^{4} - a x^{2} + 1\right )} \sqrt {x^{5} + x}} \,d x } \]

input
integrate((-3*x^5+x)/(x^5+x)^(1/2)/(x^8+2*x^4-a*x^2+1),x, algorithm="maxim 
a")
 
output
-integrate((3*x^5 - x)/((x^8 + 2*x^4 - a*x^2 + 1)*sqrt(x^5 + x)), x)
 
3.8.88.8 Giac [F]

\[ \int \frac {x-3 x^5}{\sqrt {x+x^5} \left (1-a x^2+2 x^4+x^8\right )} \, dx=\int { -\frac {3 \, x^{5} - x}{{\left (x^{8} + 2 \, x^{4} - a x^{2} + 1\right )} \sqrt {x^{5} + x}} \,d x } \]

input
integrate((-3*x^5+x)/(x^5+x)^(1/2)/(x^8+2*x^4-a*x^2+1),x, algorithm="giac" 
)
 
output
integrate(-(3*x^5 - x)/((x^8 + 2*x^4 - a*x^2 + 1)*sqrt(x^5 + x)), x)
 
3.8.88.9 Mupad [B] (verification not implemented)

Time = 10.73 (sec) , antiderivative size = 217, normalized size of antiderivative = 3.62 \[ \int \frac {x-3 x^5}{\sqrt {x+x^5} \left (1-a x^2+2 x^4+x^8\right )} \, dx=\frac {\ln \left (\frac {512\,\sqrt {x^5+x}\,{\left (a^3\right )}^{7/4}+256\,a^5-27\,a^7+256\,a^5\,x^4-27\,x\,{\left (a^3\right )}^{5/2}-27\,a^7\,x^4-54\,a^5\,\sqrt {x^5+x}\,{\left (a^3\right )}^{3/4}+256\,a^4\,x\,\sqrt {a^3}}{a+a\,x^4-x\,\sqrt {a^3}}\right )}{2\,{\left (a^3\right )}^{1/4}}+\frac {\ln \left (\frac {54\,a^6\,\sqrt {x^5+x}\,{\left (a^3\right )}^{3/4}-512\,a\,\sqrt {x^5+x}\,{\left (a^3\right )}^{7/4}+a^6\,256{}\mathrm {i}-a^8\,27{}\mathrm {i}+a^6\,x^4\,256{}\mathrm {i}-a^8\,x^4\,27{}\mathrm {i}-a^5\,x\,\sqrt {a^3}\,256{}\mathrm {i}+a^7\,x\,\sqrt {a^3}\,27{}\mathrm {i}}{a+a\,x^4+x\,\sqrt {a^3}}\right )\,1{}\mathrm {i}}{2\,{\left (a^3\right )}^{1/4}} \]

input
int((x - 3*x^5)/((x + x^5)^(1/2)*(2*x^4 - a*x^2 + x^8 + 1)),x)
 
output
log((512*(x + x^5)^(1/2)*(a^3)^(7/4) + 256*a^5 - 27*a^7 + 256*a^5*x^4 - 27 
*x*(a^3)^(5/2) - 27*a^7*x^4 - 54*a^5*(x + x^5)^(1/2)*(a^3)^(3/4) + 256*a^4 
*x*(a^3)^(1/2))/(a + a*x^4 - x*(a^3)^(1/2)))/(2*(a^3)^(1/4)) + (log((a^6*2 
56i - a^8*27i + a^6*x^4*256i - a^8*x^4*27i + 54*a^6*(x + x^5)^(1/2)*(a^3)^ 
(3/4) - a^5*x*(a^3)^(1/2)*256i + a^7*x*(a^3)^(1/2)*27i - 512*a*(x + x^5)^( 
1/2)*(a^3)^(7/4))/(a + a*x^4 + x*(a^3)^(1/2)))*1i)/(2*(a^3)^(1/4))