3.8.90 \(\int \frac {-x+3 x^5}{\sqrt {x+x^5} (a-x^2+2 a x^4+a x^8)} \, dx\) [790]

3.8.90.1 Optimal result
3.8.90.2 Mathematica [F]
3.8.90.3 Rubi [F]
3.8.90.4 Maple [A] (verified)
3.8.90.5 Fricas [C] (verification not implemented)
3.8.90.6 Sympy [F(-1)]
3.8.90.7 Maxima [F]
3.8.90.8 Giac [F]
3.8.90.9 Mupad [B] (verification not implemented)

3.8.90.1 Optimal result

Integrand size = 39, antiderivative size = 60 \[ \int \frac {-x+3 x^5}{\sqrt {x+x^5} \left (a-x^2+2 a x^4+a x^8\right )} \, dx=\frac {\arctan \left (\frac {\sqrt {x+x^5}}{\sqrt [4]{a} \left (1+x^4\right )}\right )}{\sqrt [4]{a}}-\frac {\text {arctanh}\left (\frac {\sqrt {x+x^5}}{\sqrt [4]{a} \left (1+x^4\right )}\right )}{\sqrt [4]{a}} \]

output
arctan((x^5+x)^(1/2)/a^(1/4)/(x^4+1))/a^(1/4)-arctanh((x^5+x)^(1/2)/a^(1/4 
)/(x^4+1))/a^(1/4)
 
3.8.90.2 Mathematica [F]

\[ \int \frac {-x+3 x^5}{\sqrt {x+x^5} \left (a-x^2+2 a x^4+a x^8\right )} \, dx=\int \frac {-x+3 x^5}{\sqrt {x+x^5} \left (a-x^2+2 a x^4+a x^8\right )} \, dx \]

input
Integrate[(-x + 3*x^5)/(Sqrt[x + x^5]*(a - x^2 + 2*a*x^4 + a*x^8)),x]
 
output
Integrate[(-x + 3*x^5)/(Sqrt[x + x^5]*(a - x^2 + 2*a*x^4 + a*x^8)), x]
 
3.8.90.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {3 x^5-x}{\sqrt {x^5+x} \left (a x^8+2 a x^4+a-x^2\right )} \, dx\)

\(\Big \downarrow \) 2027

\(\displaystyle \int \frac {x \left (3 x^4-1\right )}{\sqrt {x^5+x} \left (a x^8+2 a x^4+a-x^2\right )}dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {x^4+1} \int -\frac {\sqrt {x} \left (1-3 x^4\right )}{\sqrt {x^4+1} \left (a x^8+2 a x^4-x^2+a\right )}dx}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt {x^4+1} \int \frac {\sqrt {x} \left (1-3 x^4\right )}{\sqrt {x^4+1} \left (a x^8+2 a x^4-x^2+a\right )}dx}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^4+1} \int \frac {x \left (1-3 x^4\right )}{\sqrt {x^4+1} \left (a x^8+2 a x^4-x^2+a\right )}d\sqrt {x}}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^4+1} \int \left (\frac {x}{\sqrt {x^4+1} \left (a x^8+2 a x^4-x^2+a\right )}-\frac {3 x^5}{\sqrt {x^4+1} \left (a x^8+2 a x^4-x^2+a\right )}\right )d\sqrt {x}}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^4+1} \left (\int \frac {x}{\sqrt {x^4+1} \left (a x^8+2 a x^4-x^2+a\right )}d\sqrt {x}-3 \int \frac {x^5}{\sqrt {x^4+1} \left (a x^8+2 a x^4-x^2+a\right )}d\sqrt {x}\right )}{\sqrt {x^5+x}}\)

input
Int[(-x + 3*x^5)/(Sqrt[x + x^5]*(a - x^2 + 2*a*x^4 + a*x^8)),x]
 
output
$Aborted
 

3.8.90.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2027
Int[(Fx_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(p_.), x_Symbol] :> Int[x^ 
(p*r)*(a + b*x^(s - r))^p*Fx, x] /; FreeQ[{a, b, r, s}, x] && IntegerQ[p] & 
& PosQ[s - r] &&  !(EqQ[p, 1] && EqQ[u, 1])
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.8.90.4 Maple [A] (verified)

Time = 2.81 (sec) , antiderivative size = 69, normalized size of antiderivative = 1.15

method result size
pseudoelliptic \(-\frac {\left (\frac {1}{a}\right )^{\frac {1}{4}} \left (\ln \left (\frac {\left (\frac {1}{a}\right )^{\frac {1}{4}} x +\sqrt {x \left (x^{4}+1\right )}}{-\left (\frac {1}{a}\right )^{\frac {1}{4}} x +\sqrt {x \left (x^{4}+1\right )}}\right )+2 \arctan \left (\frac {\sqrt {x \left (x^{4}+1\right )}}{x \left (\frac {1}{a}\right )^{\frac {1}{4}}}\right )\right )}{2}\) \(69\)

input
int((3*x^5-x)/(x^5+x)^(1/2)/(a*x^8+2*a*x^4-x^2+a),x,method=_RETURNVERBOSE)
 
output
-1/2*(1/a)^(1/4)*(ln(((1/a)^(1/4)*x+(x*(x^4+1))^(1/2))/(-(1/a)^(1/4)*x+(x* 
(x^4+1))^(1/2)))+2*arctan((x*(x^4+1))^(1/2)/x/(1/a)^(1/4)))
 
3.8.90.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.33 (sec) , antiderivative size = 341, normalized size of antiderivative = 5.68 \[ \int \frac {-x+3 x^5}{\sqrt {x+x^5} \left (a-x^2+2 a x^4+a x^8\right )} \, dx=-\frac {\log \left (\frac {a x^{8} + 2 \, a x^{4} + x^{2} + 2 \, \sqrt {x^{5} + x} {\left (a^{\frac {1}{4}} x + \frac {a x^{4} + a}{a^{\frac {1}{4}}}\right )} + a + \frac {2 \, {\left (a x^{5} + a x\right )}}{\sqrt {a}}}{a x^{8} + 2 \, a x^{4} - x^{2} + a}\right )}{4 \, a^{\frac {1}{4}}} + \frac {\log \left (\frac {a x^{8} + 2 \, a x^{4} + x^{2} - 2 \, \sqrt {x^{5} + x} {\left (a^{\frac {1}{4}} x + \frac {a x^{4} + a}{a^{\frac {1}{4}}}\right )} + a + \frac {2 \, {\left (a x^{5} + a x\right )}}{\sqrt {a}}}{a x^{8} + 2 \, a x^{4} - x^{2} + a}\right )}{4 \, a^{\frac {1}{4}}} - \frac {i \, \log \left (\frac {a x^{8} + 2 \, a x^{4} + x^{2} - 2 \, \sqrt {x^{5} + x} {\left (i \, a^{\frac {1}{4}} x + \frac {-i \, a x^{4} - i \, a}{a^{\frac {1}{4}}}\right )} + a - \frac {2 \, {\left (a x^{5} + a x\right )}}{\sqrt {a}}}{a x^{8} + 2 \, a x^{4} - x^{2} + a}\right )}{4 \, a^{\frac {1}{4}}} + \frac {i \, \log \left (\frac {a x^{8} + 2 \, a x^{4} + x^{2} - 2 \, \sqrt {x^{5} + x} {\left (-i \, a^{\frac {1}{4}} x + \frac {i \, a x^{4} + i \, a}{a^{\frac {1}{4}}}\right )} + a - \frac {2 \, {\left (a x^{5} + a x\right )}}{\sqrt {a}}}{a x^{8} + 2 \, a x^{4} - x^{2} + a}\right )}{4 \, a^{\frac {1}{4}}} \]

input
integrate((3*x^5-x)/(x^5+x)^(1/2)/(a*x^8+2*a*x^4-x^2+a),x, algorithm="fric 
as")
 
output
-1/4*log((a*x^8 + 2*a*x^4 + x^2 + 2*sqrt(x^5 + x)*(a^(1/4)*x + (a*x^4 + a) 
/a^(1/4)) + a + 2*(a*x^5 + a*x)/sqrt(a))/(a*x^8 + 2*a*x^4 - x^2 + a))/a^(1 
/4) + 1/4*log((a*x^8 + 2*a*x^4 + x^2 - 2*sqrt(x^5 + x)*(a^(1/4)*x + (a*x^4 
 + a)/a^(1/4)) + a + 2*(a*x^5 + a*x)/sqrt(a))/(a*x^8 + 2*a*x^4 - x^2 + a)) 
/a^(1/4) - 1/4*I*log((a*x^8 + 2*a*x^4 + x^2 - 2*sqrt(x^5 + x)*(I*a^(1/4)*x 
 + (-I*a*x^4 - I*a)/a^(1/4)) + a - 2*(a*x^5 + a*x)/sqrt(a))/(a*x^8 + 2*a*x 
^4 - x^2 + a))/a^(1/4) + 1/4*I*log((a*x^8 + 2*a*x^4 + x^2 - 2*sqrt(x^5 + x 
)*(-I*a^(1/4)*x + (I*a*x^4 + I*a)/a^(1/4)) + a - 2*(a*x^5 + a*x)/sqrt(a))/ 
(a*x^8 + 2*a*x^4 - x^2 + a))/a^(1/4)
 
3.8.90.6 Sympy [F(-1)]

Timed out. \[ \int \frac {-x+3 x^5}{\sqrt {x+x^5} \left (a-x^2+2 a x^4+a x^8\right )} \, dx=\text {Timed out} \]

input
integrate((3*x**5-x)/(x**5+x)**(1/2)/(a*x**8+2*a*x**4-x**2+a),x)
 
output
Timed out
 
3.8.90.7 Maxima [F]

\[ \int \frac {-x+3 x^5}{\sqrt {x+x^5} \left (a-x^2+2 a x^4+a x^8\right )} \, dx=\int { \frac {3 \, x^{5} - x}{{\left (a x^{8} + 2 \, a x^{4} - x^{2} + a\right )} \sqrt {x^{5} + x}} \,d x } \]

input
integrate((3*x^5-x)/(x^5+x)^(1/2)/(a*x^8+2*a*x^4-x^2+a),x, algorithm="maxi 
ma")
 
output
integrate((3*x^5 - x)/((a*x^8 + 2*a*x^4 - x^2 + a)*sqrt(x^5 + x)), x)
 
3.8.90.8 Giac [F]

\[ \int \frac {-x+3 x^5}{\sqrt {x+x^5} \left (a-x^2+2 a x^4+a x^8\right )} \, dx=\int { \frac {3 \, x^{5} - x}{{\left (a x^{8} + 2 \, a x^{4} - x^{2} + a\right )} \sqrt {x^{5} + x}} \,d x } \]

input
integrate((3*x^5-x)/(x^5+x)^(1/2)/(a*x^8+2*a*x^4-x^2+a),x, algorithm="giac 
")
 
output
sage0*x
 
3.8.90.9 Mupad [B] (verification not implemented)

Time = 8.91 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.63 \[ \int \frac {-x+3 x^5}{\sqrt {x+x^5} \left (a-x^2+2 a x^4+a x^8\right )} \, dx=\frac {\ln \left (\frac {x-2\,a^{1/4}\,\sqrt {x^5+x}+\sqrt {a}+\sqrt {a}\,x^4}{\sqrt {a}-x+\sqrt {a}\,x^4}\right )}{2\,a^{1/4}}+\frac {\ln \left (\frac {x-\sqrt {a}-\sqrt {a}\,x^4+a^{1/4}\,\sqrt {x^5+x}\,2{}\mathrm {i}}{x+\sqrt {a}+\sqrt {a}\,x^4}\right )\,1{}\mathrm {i}}{2\,a^{1/4}} \]

input
int(-(x - 3*x^5)/((x + x^5)^(1/2)*(a + 2*a*x^4 + a*x^8 - x^2)),x)
 
output
log((x - 2*a^(1/4)*(x + x^5)^(1/2) + a^(1/2) + a^(1/2)*x^4)/(a^(1/2) - x + 
 a^(1/2)*x^4))/(2*a^(1/4)) + (log((x + a^(1/4)*(x + x^5)^(1/2)*2i - a^(1/2 
) - a^(1/2)*x^4)/(x + a^(1/2) + a^(1/2)*x^4))*1i)/(2*a^(1/4))