3.10.15 \(\int \frac {(-3+x^4) (1+x^4) (1+x^3+x^4)}{x^6 (1-x^3+x^4) \sqrt [4]{x+x^5}} \, dx\) [915]

3.10.15.1 Optimal result
3.10.15.2 Mathematica [F]
3.10.15.3 Rubi [F]
3.10.15.4 Maple [A] (verified)
3.10.15.5 Fricas [B] (verification not implemented)
3.10.15.6 Sympy [F(-1)]
3.10.15.7 Maxima [F]
3.10.15.8 Giac [F]
3.10.15.9 Mupad [F(-1)]

3.10.15.1 Optimal result

Integrand size = 43, antiderivative size = 69 \[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\frac {4 \left (3+14 x^3+3 x^4\right ) \left (x+x^5\right )^{3/4}}{21 x^6}-4 \arctan \left (\frac {\left (x+x^5\right )^{3/4}}{1+x^4}\right )-4 \text {arctanh}\left (\frac {\left (x+x^5\right )^{3/4}}{1+x^4}\right ) \]

output
4/21*(3*x^4+14*x^3+3)*(x^5+x)^(3/4)/x^6-4*arctan((x^5+x)^(3/4)/(x^4+1))-4* 
arctanh((x^5+x)^(3/4)/(x^4+1))
 
3.10.15.2 Mathematica [F]

\[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx \]

input
Integrate[((-3 + x^4)*(1 + x^4)*(1 + x^3 + x^4))/(x^6*(1 - x^3 + x^4)*(x + 
 x^5)^(1/4)),x]
 
output
Integrate[((-3 + x^4)*(1 + x^4)*(1 + x^3 + x^4))/(x^6*(1 - x^3 + x^4)*(x + 
 x^5)^(1/4)), x]
 
3.10.15.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^4-3\right ) \left (x^4+1\right ) \left (x^4+x^3+1\right )}{x^6 \left (x^4-x^3+1\right ) \sqrt [4]{x^5+x}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{x} \sqrt [4]{x^4+1} \int -\frac {\left (3-x^4\right ) \left (x^4+1\right )^{3/4} \left (x^4+x^3+1\right )}{x^{25/4} \left (x^4-x^3+1\right )}dx}{\sqrt [4]{x^5+x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{x} \sqrt [4]{x^4+1} \int \frac {\left (3-x^4\right ) \left (x^4+1\right )^{3/4} \left (x^4+x^3+1\right )}{x^{25/4} \left (x^4-x^3+1\right )}dx}{\sqrt [4]{x^5+x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^4+1} \int \frac {\left (3-x^4\right ) \left (x^4+1\right )^{3/4} \left (x^4+x^3+1\right )}{x^{11/2} \left (x^4-x^3+1\right )}d\sqrt [4]{x}}{\sqrt [4]{x^5+x}}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^4+1} \int \left (\frac {2 \sqrt {x} \left (x^4+1\right )^{3/4} (3-4 x)}{x^4-x^3+1}-\frac {\left (x^4+1\right )^{3/4}}{x^{3/2}}+\frac {6 \left (x^4+1\right )^{3/4}}{x^{5/2}}+\frac {3 \left (x^4+1\right )^{3/4}}{x^{11/2}}\right )d\sqrt [4]{x}}{\sqrt [4]{x^5+x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^4+1} \left (6 \int \frac {\sqrt {x} \left (x^4+1\right )^{3/4}}{x^4-x^3+1}d\sqrt [4]{x}-8 \int \frac {x^{3/2} \left (x^4+1\right )^{3/4}}{x^4-x^3+1}d\sqrt [4]{x}-\frac {\operatorname {Hypergeometric2F1}\left (-\frac {21}{16},-\frac {3}{4},-\frac {5}{16},-x^4\right )}{7 x^{21/4}}-\frac {2 \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {9}{16},\frac {7}{16},-x^4\right )}{3 x^{9/4}}+\frac {\operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {5}{16},\frac {11}{16},-x^4\right )}{5 x^{5/4}}\right )}{\sqrt [4]{x^5+x}}\)

input
Int[((-3 + x^4)*(1 + x^4)*(1 + x^3 + x^4))/(x^6*(1 - x^3 + x^4)*(x + x^5)^ 
(1/4)),x]
 
output
$Aborted
 

3.10.15.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.10.15.4 Maple [A] (verified)

Time = 4.56 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.32

method result size
pseudoelliptic \(\frac {2 \ln \left (\frac {{\left (x \left (x^{4}+1\right )\right )}^{\frac {1}{4}}-x}{x}\right ) x^{6}-2 \ln \left (\frac {{\left (x \left (x^{4}+1\right )\right )}^{\frac {1}{4}}+x}{x}\right ) x^{6}+4 \arctan \left (\frac {{\left (x \left (x^{4}+1\right )\right )}^{\frac {1}{4}}}{x}\right ) x^{6}+\frac {4 {\left (x \left (x^{4}+1\right )\right )}^{\frac {3}{4}} \left (x^{4}+\frac {14}{3} x^{3}+1\right )}{7}}{x^{6}}\) \(91\)
trager \(\frac {4 \left (3 x^{4}+14 x^{3}+3\right ) \left (x^{5}+x \right )^{\frac {3}{4}}}{21 x^{6}}+2 \ln \left (-\frac {-x^{4}+2 \left (x^{5}+x \right )^{\frac {3}{4}}-2 x \sqrt {x^{5}+x}+2 \left (x^{5}+x \right )^{\frac {1}{4}} x^{2}-x^{3}-1}{x^{4}-x^{3}+1}\right )+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (-\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{4}+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{5}+x}\, x -\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{3}+2 \left (x^{5}+x \right )^{\frac {3}{4}}-2 \left (x^{5}+x \right )^{\frac {1}{4}} x^{2}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )}{x^{4}-x^{3}+1}\right )\) \(177\)
risch \(\frac {\frac {4}{7} x^{8}+\frac {8}{7} x^{4}+\frac {4}{7}+\frac {8}{3} x^{7}+\frac {8}{3} x^{3}}{x^{5} {\left (x \left (x^{4}+1\right )\right )}^{\frac {1}{4}}}-2 \ln \left (\frac {x^{4}+2 \left (x^{5}+x \right )^{\frac {3}{4}}+2 x \sqrt {x^{5}+x}+2 \left (x^{5}+x \right )^{\frac {1}{4}} x^{2}+x^{3}+1}{x^{4}-x^{3}+1}\right )+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{4}+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{5}+x}\, x -\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{3}+2 \left (x^{5}+x \right )^{\frac {3}{4}}-2 \left (x^{5}+x \right )^{\frac {1}{4}} x^{2}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )}{x^{4}-x^{3}+1}\right )\) \(183\)

input
int((x^4-3)*(x^4+1)*(x^4+x^3+1)/x^6/(x^4-x^3+1)/(x^5+x)^(1/4),x,method=_RE 
TURNVERBOSE)
 
output
2/7*(7*ln(((x*(x^4+1))^(1/4)-x)/x)*x^6-7*ln(((x*(x^4+1))^(1/4)+x)/x)*x^6+1 
4*arctan((x*(x^4+1))^(1/4)/x)*x^6+2*(x*(x^4+1))^(3/4)*(x^4+14/3*x^3+1))/x^ 
6
 
3.10.15.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 125 vs. \(2 (61) = 122\).

Time = 25.54 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.81 \[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=-\frac {2 \, {\left (21 \, x^{6} \arctan \left (\frac {{\left (x^{5} + x\right )}^{\frac {3}{4}} x - {\left (x^{5} + x\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )}}{2 \, {\left (x^{5} + x\right )}}\right ) - 21 \, x^{6} \log \left (-\frac {x^{4} + x^{3} - 2 \, {\left (x^{5} + x\right )}^{\frac {1}{4}} x^{2} + 2 \, \sqrt {x^{5} + x} x - 2 \, {\left (x^{5} + x\right )}^{\frac {3}{4}} + 1}{x^{4} - x^{3} + 1}\right ) - 2 \, {\left (x^{5} + x\right )}^{\frac {3}{4}} {\left (3 \, x^{4} + 14 \, x^{3} + 3\right )}\right )}}{21 \, x^{6}} \]

input
integrate((x^4-3)*(x^4+1)*(x^4+x^3+1)/x^6/(x^4-x^3+1)/(x^5+x)^(1/4),x, alg 
orithm="fricas")
 
output
-2/21*(21*x^6*arctan(1/2*((x^5 + x)^(3/4)*x - (x^5 + x)^(1/4)*(x^4 + 1))/( 
x^5 + x)) - 21*x^6*log(-(x^4 + x^3 - 2*(x^5 + x)^(1/4)*x^2 + 2*sqrt(x^5 + 
x)*x - 2*(x^5 + x)^(3/4) + 1)/(x^4 - x^3 + 1)) - 2*(x^5 + x)^(3/4)*(3*x^4 
+ 14*x^3 + 3))/x^6
 
3.10.15.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\text {Timed out} \]

input
integrate((x**4-3)*(x**4+1)*(x**4+x**3+1)/x**6/(x**4-x**3+1)/(x**5+x)**(1/ 
4),x)
 
output
Timed out
 
3.10.15.7 Maxima [F]

\[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int { \frac {{\left (x^{4} + x^{3} + 1\right )} {\left (x^{4} + 1\right )} {\left (x^{4} - 3\right )}}{{\left (x^{5} + x\right )}^{\frac {1}{4}} {\left (x^{4} - x^{3} + 1\right )} x^{6}} \,d x } \]

input
integrate((x^4-3)*(x^4+1)*(x^4+x^3+1)/x^6/(x^4-x^3+1)/(x^5+x)^(1/4),x, alg 
orithm="maxima")
 
output
integrate((x^4 + x^3 + 1)*(x^4 + 1)*(x^4 - 3)/((x^5 + x)^(1/4)*(x^4 - x^3 
+ 1)*x^6), x)
 
3.10.15.8 Giac [F]

\[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int { \frac {{\left (x^{4} + x^{3} + 1\right )} {\left (x^{4} + 1\right )} {\left (x^{4} - 3\right )}}{{\left (x^{5} + x\right )}^{\frac {1}{4}} {\left (x^{4} - x^{3} + 1\right )} x^{6}} \,d x } \]

input
integrate((x^4-3)*(x^4+1)*(x^4+x^3+1)/x^6/(x^4-x^3+1)/(x^5+x)^(1/4),x, alg 
orithm="giac")
 
output
integrate((x^4 + x^3 + 1)*(x^4 + 1)*(x^4 - 3)/((x^5 + x)^(1/4)*(x^4 - x^3 
+ 1)*x^6), x)
 
3.10.15.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int \frac {\left (x^4+1\right )\,\left (x^4-3\right )\,\left (x^4+x^3+1\right )}{x^6\,{\left (x^5+x\right )}^{1/4}\,\left (x^4-x^3+1\right )} \,d x \]

input
int(((x^4 + 1)*(x^4 - 3)*(x^3 + x^4 + 1))/(x^6*(x + x^5)^(1/4)*(x^4 - x^3 
+ 1)),x)
 
output
int(((x^4 + 1)*(x^4 - 3)*(x^3 + x^4 + 1))/(x^6*(x + x^5)^(1/4)*(x^4 - x^3 
+ 1)), x)