3.10.54 \(\int \frac {(-1+3 x^4) \sqrt {1+x^2+2 x^4+x^8}}{(1-x+x^4)^2 (1+x+x^4)} \, dx\) [954]

3.10.54.1 Optimal result
3.10.54.2 Mathematica [A] (verified)
3.10.54.3 Rubi [F]
3.10.54.4 Maple [A] (verified)
3.10.54.5 Fricas [A] (verification not implemented)
3.10.54.6 Sympy [F(-1)]
3.10.54.7 Maxima [F]
3.10.54.8 Giac [F]
3.10.54.9 Mupad [F(-1)]

3.10.54.1 Optimal result

Integrand size = 43, antiderivative size = 72 \[ \int \frac {\left (-1+3 x^4\right ) \sqrt {1+x^2+2 x^4+x^8}}{\left (1-x+x^4\right )^2 \left (1+x+x^4\right )} \, dx=-\frac {\sqrt {1+x^2+2 x^4+x^8}}{2 \left (1-x+x^4\right )}-\frac {\text {arctanh}\left (\frac {\sqrt {2} x}{1+x+x^4+\sqrt {1+x^2+2 x^4+x^8}}\right )}{\sqrt {2}} \]

output
-(x^8+2*x^4+x^2+1)^(1/2)/(2*x^4-2*x+2)-1/2*arctanh(2^(1/2)*x/(1+x+x^4+(x^8 
+2*x^4+x^2+1)^(1/2)))*2^(1/2)
 
3.10.54.2 Mathematica [A] (verified)

Time = 0.50 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.00 \[ \int \frac {\left (-1+3 x^4\right ) \sqrt {1+x^2+2 x^4+x^8}}{\left (1-x+x^4\right )^2 \left (1+x+x^4\right )} \, dx=-\frac {\sqrt {1+x^2+2 x^4+x^8}}{2 \left (1-x+x^4\right )}-\frac {\text {arctanh}\left (\frac {\sqrt {2} x}{1+x+x^4+\sqrt {1+x^2+2 x^4+x^8}}\right )}{\sqrt {2}} \]

input
Integrate[((-1 + 3*x^4)*Sqrt[1 + x^2 + 2*x^4 + x^8])/((1 - x + x^4)^2*(1 + 
 x + x^4)),x]
 
output
-1/2*Sqrt[1 + x^2 + 2*x^4 + x^8]/(1 - x + x^4) - ArcTanh[(Sqrt[2]*x)/(1 + 
x + x^4 + Sqrt[1 + x^2 + 2*x^4 + x^8])]/Sqrt[2]
 
3.10.54.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (3 x^4-1\right ) \sqrt {x^8+2 x^4+x^2+1}}{\left (x^4-x+1\right )^2 \left (x^4+x+1\right )} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {\sqrt {x^8+2 x^4+x^2+1} \left (-x^3+4 x^2-1\right )}{4 \left (x^4+x+1\right )}+\frac {\left (x^3-4 x^2-1\right ) \sqrt {x^8+2 x^4+x^2+1}}{4 \left (x^4-x+1\right )}+\frac {\left (4 x^3-1\right ) \sqrt {x^8+2 x^4+x^2+1}}{2 \left (x^4-x+1\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{4} \int \frac {\sqrt {x^8+2 x^4+x^2+1}}{-x^4-x-1}dx+\frac {1}{4} \int \frac {\sqrt {x^8+2 x^4+x^2+1}}{-x^4+x-1}dx-\frac {1}{2} \int \frac {\sqrt {x^8+2 x^4+x^2+1}}{\left (x^4-x+1\right )^2}dx-\int \frac {x^2 \sqrt {x^8+2 x^4+x^2+1}}{x^4-x+1}dx+\int \frac {x^2 \sqrt {x^8+2 x^4+x^2+1}}{x^4+x+1}dx+2 \int \frac {x^3 \sqrt {x^8+2 x^4+x^2+1}}{\left (x^4-x+1\right )^2}dx+\frac {1}{4} \int \frac {x^3 \sqrt {x^8+2 x^4+x^2+1}}{x^4-x+1}dx-\frac {1}{4} \int \frac {x^3 \sqrt {x^8+2 x^4+x^2+1}}{x^4+x+1}dx\)

input
Int[((-1 + 3*x^4)*Sqrt[1 + x^2 + 2*x^4 + x^8])/((1 - x + x^4)^2*(1 + x + x 
^4)),x]
 
output
$Aborted
 

3.10.54.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.10.54.4 Maple [A] (verified)

Time = 2.13 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.01

method result size
pseudoelliptic \(\frac {\left (x^{4}-x +1\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (x^{4}-x +1\right ) \sqrt {2}}{2 \sqrt {x^{8}+2 x^{4}+x^{2}+1}}\right )-2 \sqrt {x^{8}+2 x^{4}+x^{2}+1}}{4 x^{4}-4 x +4}\) \(73\)
trager \(-\frac {\sqrt {x^{8}+2 x^{4}+x^{2}+1}}{2 \left (x^{4}-x +1\right )}-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) \ln \left (\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x^{4}-\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x +\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right )-2 \sqrt {x^{8}+2 x^{4}+x^{2}+1}}{x^{4}+x +1}\right )}{4}\) \(90\)
risch \(-\frac {\sqrt {x^{8}+2 x^{4}+x^{2}+1}}{2 \left (x^{4}-x +1\right )}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x^{4}-\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x +\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right )+2 \sqrt {x^{8}+2 x^{4}+x^{2}+1}}{x^{4}+x +1}\right )}{4}\) \(91\)

input
int((3*x^4-1)*(x^8+2*x^4+x^2+1)^(1/2)/(x^4-x+1)^2/(x^4+x+1),x,method=_RETU 
RNVERBOSE)
 
output
((x^4-x+1)*2^(1/2)*arctanh(1/2*(x^4-x+1)*2^(1/2)/(x^8+2*x^4+x^2+1)^(1/2))- 
2*(x^8+2*x^4+x^2+1)^(1/2))/(4*x^4-4*x+4)
 
3.10.54.5 Fricas [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.67 \[ \int \frac {\left (-1+3 x^4\right ) \sqrt {1+x^2+2 x^4+x^8}}{\left (1-x+x^4\right )^2 \left (1+x+x^4\right )} \, dx=\frac {\sqrt {2} {\left (x^{4} - x + 1\right )} \log \left (\frac {3 \, x^{8} - 2 \, x^{5} + 6 \, x^{4} + 2 \, \sqrt {2} \sqrt {x^{8} + 2 \, x^{4} + x^{2} + 1} {\left (x^{4} - x + 1\right )} + 3 \, x^{2} - 2 \, x + 3}{x^{8} + 2 \, x^{5} + 2 \, x^{4} + x^{2} + 2 \, x + 1}\right ) - 4 \, \sqrt {x^{8} + 2 \, x^{4} + x^{2} + 1}}{8 \, {\left (x^{4} - x + 1\right )}} \]

input
integrate((3*x^4-1)*(x^8+2*x^4+x^2+1)^(1/2)/(x^4-x+1)^2/(x^4+x+1),x, algor 
ithm="fricas")
 
output
1/8*(sqrt(2)*(x^4 - x + 1)*log((3*x^8 - 2*x^5 + 6*x^4 + 2*sqrt(2)*sqrt(x^8 
 + 2*x^4 + x^2 + 1)*(x^4 - x + 1) + 3*x^2 - 2*x + 3)/(x^8 + 2*x^5 + 2*x^4 
+ x^2 + 2*x + 1)) - 4*sqrt(x^8 + 2*x^4 + x^2 + 1))/(x^4 - x + 1)
 
3.10.54.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (-1+3 x^4\right ) \sqrt {1+x^2+2 x^4+x^8}}{\left (1-x+x^4\right )^2 \left (1+x+x^4\right )} \, dx=\text {Timed out} \]

input
integrate((3*x**4-1)*(x**8+2*x**4+x**2+1)**(1/2)/(x**4-x+1)**2/(x**4+x+1), 
x)
 
output
Timed out
 
3.10.54.7 Maxima [F]

\[ \int \frac {\left (-1+3 x^4\right ) \sqrt {1+x^2+2 x^4+x^8}}{\left (1-x+x^4\right )^2 \left (1+x+x^4\right )} \, dx=\int { \frac {\sqrt {x^{8} + 2 \, x^{4} + x^{2} + 1} {\left (3 \, x^{4} - 1\right )}}{{\left (x^{4} + x + 1\right )} {\left (x^{4} - x + 1\right )}^{2}} \,d x } \]

input
integrate((3*x^4-1)*(x^8+2*x^4+x^2+1)^(1/2)/(x^4-x+1)^2/(x^4+x+1),x, algor 
ithm="maxima")
 
output
integrate(sqrt(x^8 + 2*x^4 + x^2 + 1)*(3*x^4 - 1)/((x^4 + x + 1)*(x^4 - x 
+ 1)^2), x)
 
3.10.54.8 Giac [F]

\[ \int \frac {\left (-1+3 x^4\right ) \sqrt {1+x^2+2 x^4+x^8}}{\left (1-x+x^4\right )^2 \left (1+x+x^4\right )} \, dx=\int { \frac {\sqrt {x^{8} + 2 \, x^{4} + x^{2} + 1} {\left (3 \, x^{4} - 1\right )}}{{\left (x^{4} + x + 1\right )} {\left (x^{4} - x + 1\right )}^{2}} \,d x } \]

input
integrate((3*x^4-1)*(x^8+2*x^4+x^2+1)^(1/2)/(x^4-x+1)^2/(x^4+x+1),x, algor 
ithm="giac")
 
output
integrate(sqrt(x^8 + 2*x^4 + x^2 + 1)*(3*x^4 - 1)/((x^4 + x + 1)*(x^4 - x 
+ 1)^2), x)
 
3.10.54.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (-1+3 x^4\right ) \sqrt {1+x^2+2 x^4+x^8}}{\left (1-x+x^4\right )^2 \left (1+x+x^4\right )} \, dx=\int \frac {\left (3\,x^4-1\right )\,\sqrt {x^8+2\,x^4+x^2+1}}{{\left (x^4-x+1\right )}^2\,\left (x^4+x+1\right )} \,d x \]

input
int(((3*x^4 - 1)*(x^2 + 2*x^4 + x^8 + 1)^(1/2))/((x^4 - x + 1)^2*(x + x^4 
+ 1)),x)
 
output
int(((3*x^4 - 1)*(x^2 + 2*x^4 + x^8 + 1)^(1/2))/((x^4 - x + 1)^2*(x + x^4 
+ 1)), x)