3.28.81 \(\int \frac {-2 e^3+e^6 (-4 x+10 x^2)+e^6 (-2+20 x-50 x^2) \log (4)}{x^2+2 e^3 x^3+e^6 x^4+(2 x-10 x^2+e^3 (4 x^2-20 x^3)+e^6 (2 x^3-10 x^4)) \log (4)+(1-10 x+25 x^2+e^3 (2 x-20 x^2+50 x^3)+e^6 (x^2-10 x^3+25 x^4)) \log ^2(4)} \, dx\) [2781]

3.28.81.1 Optimal result
3.28.81.2 Mathematica [A] (verified)
3.28.81.3 Rubi [B] (verified)
3.28.81.4 Maple [A] (verified)
3.28.81.5 Fricas [A] (verification not implemented)
3.28.81.6 Sympy [B] (verification not implemented)
3.28.81.7 Maxima [A] (verification not implemented)
3.28.81.8 Giac [B] (verification not implemented)
3.28.81.9 Mupad [F(-1)]

3.28.81.1 Optimal result

Integrand size = 150, antiderivative size = 23 \[ \int \frac {-2 e^3+e^6 \left (-4 x+10 x^2\right )+e^6 \left (-2+20 x-50 x^2\right ) \log (4)}{x^2+2 e^3 x^3+e^6 x^4+\left (2 x-10 x^2+e^3 \left (4 x^2-20 x^3\right )+e^6 \left (2 x^3-10 x^4\right )\right ) \log (4)+\left (1-10 x+25 x^2+e^3 \left (2 x-20 x^2+50 x^3\right )+e^6 \left (x^2-10 x^3+25 x^4\right )\right ) \log ^2(4)} \, dx=\frac {2}{\left (\frac {1}{e^3}+x\right ) \left (\frac {x}{1-5 x}+\log (4)\right )} \]

output
2/(1/exp(3)+x)/(x/(-5*x+1)+2*ln(2))
 
3.28.81.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.48 \[ \int \frac {-2 e^3+e^6 \left (-4 x+10 x^2\right )+e^6 \left (-2+20 x-50 x^2\right ) \log (4)}{x^2+2 e^3 x^3+e^6 x^4+\left (2 x-10 x^2+e^3 \left (4 x^2-20 x^3\right )+e^6 \left (2 x^3-10 x^4\right )\right ) \log (4)+\left (1-10 x+25 x^2+e^3 \left (2 x-20 x^2+50 x^3\right )+e^6 \left (x^2-10 x^3+25 x^4\right )\right ) \log ^2(4)} \, dx=-\frac {2 e^3 (1-5 x)}{\left (1+e^3 x\right ) (-\log (4)+x (-1+5 \log (4)))} \]

input
Integrate[(-2*E^3 + E^6*(-4*x + 10*x^2) + E^6*(-2 + 20*x - 50*x^2)*Log[4]) 
/(x^2 + 2*E^3*x^3 + E^6*x^4 + (2*x - 10*x^2 + E^3*(4*x^2 - 20*x^3) + E^6*( 
2*x^3 - 10*x^4))*Log[4] + (1 - 10*x + 25*x^2 + E^3*(2*x - 20*x^2 + 50*x^3) 
 + E^6*(x^2 - 10*x^3 + 25*x^4))*Log[4]^2),x]
 
output
(-2*E^3*(1 - 5*x))/((1 + E^3*x)*(-Log[4] + x*(-1 + 5*Log[4])))
 
3.28.81.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(199\) vs. \(2(23)=46\).

Time = 0.72 (sec) , antiderivative size = 199, normalized size of antiderivative = 8.65, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {2459, 1380, 27, 2345, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^6 \left (10 x^2-4 x\right )+e^6 \left (-50 x^2+20 x-2\right ) \log (4)-2 e^3}{e^6 x^4+2 e^3 x^3+x^2+\left (25 x^2+e^3 \left (50 x^3-20 x^2+2 x\right )+e^6 \left (25 x^4-10 x^3+x^2\right )-10 x+1\right ) \log ^2(4)+\left (-10 x^2+e^6 \left (2 x^3-10 x^4\right )+e^3 \left (4 x^2-20 x^3\right )+2 x\right ) \log (4)} \, dx\)

\(\Big \downarrow \) 2459

\(\displaystyle \int \frac {10 e^6 (1-5 \log (4)) \left (x+\frac {2 e^3+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)-20 e^3 \log (4)+2 e^6 \log (4)}{4 \left (e^6+25 e^6 \log ^2(4)-10 e^6 \log (4)\right )}\right )^2-2 e^3 \left (5+e^3 (2-5 \log (4))-25 \log (4)\right ) \left (x+\frac {2 e^3+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)-20 e^3 \log (4)+2 e^6 \log (4)}{4 \left (e^6+25 e^6 \log ^2(4)-10 e^6 \log (4)\right )}\right )+\frac {5 \left (1-5 \log (4)-e^3 \log (4)\right )^2}{2 (1-5 \log (4))}}{e^6 (1-5 \log (4))^2 \left (x+\frac {2 e^3+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)-20 e^3 \log (4)+2 e^6 \log (4)}{4 \left (e^6+25 e^6 \log ^2(4)-10 e^6 \log (4)\right )}\right )^4-\frac {1}{2} \left (1-5 \log (4)-e^3 \log (4)\right )^2 \left (x+\frac {2 e^3+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)-20 e^3 \log (4)+2 e^6 \log (4)}{4 \left (e^6+25 e^6 \log ^2(4)-10 e^6 \log (4)\right )}\right )^2+\frac {\left (1-5 \log (4)-e^3 \log (4)\right )^4}{16 e^6 (1-5 \log (4))^2}}d\left (x+\frac {2 e^3+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)-20 e^3 \log (4)+2 e^6 \log (4)}{4 \left (e^6+25 e^6 \log ^2(4)-10 e^6 \log (4)\right )}\right )\)

\(\Big \downarrow \) 1380

\(\displaystyle e^6 (1-5 \log (4))^2 \int -\frac {8 \left (-20 e^6 (1-5 \log (4)) \left (x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )^2+4 e^3 \left (5+e^3 (2-5 \log (4))-25 \log (4)\right ) \left (x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )-\frac {5 \left (1-5 \log (4)-e^3 \log (4)\right )^2}{1-5 \log (4)}\right )}{\left (4 e^6 (1-5 \log (4))^2 \left (x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )^2-\left (1-5 \log (4)-e^3 \log (4)\right )^2\right )^2}d\left (x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle -8 e^6 (1-5 \log (4))^2 \int \frac {-20 e^6 (1-5 \log (4)) \left (x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )^2+4 e^3 \left (5+e^3 (2-5 \log (4))-25 \log (4)\right ) \left (x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )-\frac {5 \left (1-5 \log (4)-e^3 \log (4)\right )^2}{1-5 \log (4)}}{\left (4 e^6 (1-5 \log (4))^2 \left (x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )^2-\left (1-5 \log (4)-e^3 \log (4)\right )^2\right )^2}d\left (x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )\)

\(\Big \downarrow \) 2345

\(\displaystyle -8 e^6 (1-5 \log (4))^2 \left (\frac {\int 0d\left (x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )}{2 \left (1-5 \log (4)-e^3 \log (4)\right )^2}-\frac {-10 e^3 (1-5 \log (4)) \left (x+\frac {2 e^3+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)-20 e^3 \log (4)+2 e^6 \log (4)}{4 \left (e^6+25 e^6 \log ^2(4)-10 e^6 \log (4)\right )}\right )+5-25 \log (4)+e^3 (2-5 \log (4))}{2 e^3 (1-5 \log (4))^2 \left (4 e^6 (1-5 \log (4))^2 \left (x+\frac {2 e^3+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)-20 e^3 \log (4)+2 e^6 \log (4)}{4 \left (e^6+25 e^6 \log ^2(4)-10 e^6 \log (4)\right )}\right )^2-\left (1-5 \log (4)-e^3 \log (4)\right )^2\right )}\right )\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {4 e^3 \left (-10 e^3 (1-5 \log (4)) \left (x+\frac {2 e^3+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)-20 e^3 \log (4)+2 e^6 \log (4)}{4 \left (e^6+25 e^6 \log ^2(4)-10 e^6 \log (4)\right )}\right )+5-25 \log (4)+e^3 (2-5 \log (4))\right )}{4 e^6 (1-5 \log (4))^2 \left (x+\frac {2 e^3+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)-20 e^3 \log (4)+2 e^6 \log (4)}{4 \left (e^6+25 e^6 \log ^2(4)-10 e^6 \log (4)\right )}\right )^2-\left (1-5 \log (4)-e^3 \log (4)\right )^2}\)

input
Int[(-2*E^3 + E^6*(-4*x + 10*x^2) + E^6*(-2 + 20*x - 50*x^2)*Log[4])/(x^2 
+ 2*E^3*x^3 + E^6*x^4 + (2*x - 10*x^2 + E^3*(4*x^2 - 20*x^3) + E^6*(2*x^3 
- 10*x^4))*Log[4] + (1 - 10*x + 25*x^2 + E^3*(2*x - 20*x^2 + 50*x^3) + E^6 
*(x^2 - 10*x^3 + 25*x^4))*Log[4]^2),x]
 
output
(4*E^3*(5 + E^3*(2 - 5*Log[4]) - 25*Log[4] - 10*E^3*(1 - 5*Log[4])*(x + (2 
*E^3 - 20*E^3*Log[4] + 2*E^6*Log[4] + 50*E^3*Log[4]^2 - 10*E^6*Log[4]^2)/( 
4*(E^6 - 10*E^6*Log[4] + 25*E^6*Log[4]^2)))))/(-(1 - 5*Log[4] - E^3*Log[4] 
)^2 + 4*E^6*(1 - 5*Log[4])^2*(x + (2*E^3 - 20*E^3*Log[4] + 2*E^6*Log[4] + 
50*E^3*Log[4]^2 - 10*E^6*Log[4]^2)/(4*(E^6 - 10*E^6*Log[4] + 25*E^6*Log[4] 
^2)))^2)
 

3.28.81.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1380
Int[(u_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> S 
imp[1/c^p   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
 

rule 2345
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuot 
ient[Pq, a + b*x^2, x], f = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 
 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[(a*g - b 
*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Simp[1/(2*a*(p + 1))   In 
t[(a + b*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] 
/; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]
 

rule 2459
Int[(Pn_)^(p_.)*(Qx_), x_Symbol] :> With[{S = Coeff[Pn, x, Expon[Pn, x] - 1 
]/(Expon[Pn, x]*Coeff[Pn, x, Expon[Pn, x]])}, Subst[Int[ExpandToSum[Pn /. x 
 -> x - S, x]^p*ExpandToSum[Qx /. x -> x - S, x], x], x, x + S] /; Binomial 
Q[Pn /. x -> x - S, x] || (IntegerQ[Expon[Pn, x]/2] && TrinomialQ[Pn /. x - 
> x - S, x])] /; FreeQ[p, x] && PolyQ[Pn, x] && GtQ[Expon[Pn, x], 2] && NeQ 
[Coeff[Pn, x, Expon[Pn, x] - 1], 0] && PolyQ[Qx, x] &&  !(MonomialQ[Qx, x] 
&& IGtQ[p, 0])
 
3.28.81.4 Maple [A] (verified)

Time = 0.44 (sec) , antiderivative size = 47, normalized size of antiderivative = 2.04

method result size
risch \(\frac {x \,{\mathrm e}^{3}-\frac {{\mathrm e}^{3}}{5}}{\ln \left (2\right ) {\mathrm e}^{3} x^{2}-\frac {{\mathrm e}^{3} \ln \left (2\right ) x}{5}-\frac {x^{2} {\mathrm e}^{3}}{10}+x \ln \left (2\right )-\frac {\ln \left (2\right )}{5}-\frac {x}{10}}\) \(47\)
gosper \(\frac {2 \left (5 x -1\right ) {\mathrm e}^{3}}{10 \ln \left (2\right ) {\mathrm e}^{3} x^{2}-2 \,{\mathrm e}^{3} \ln \left (2\right ) x -x^{2} {\mathrm e}^{3}+10 x \ln \left (2\right )-2 \ln \left (2\right )-x}\) \(48\)
norman \(\frac {\frac {\left (4 \ln \left (2\right ) {\mathrm e}^{6}+2 \,{\mathrm e}^{3}\right ) x}{2 \ln \left (2\right )}-\frac {\left (10 \ln \left (2\right )-1\right ) {\mathrm e}^{6} x^{2}}{\ln \left (2\right )}}{\left (10 x \ln \left (2\right )-2 \ln \left (2\right )-x \right ) \left (x \,{\mathrm e}^{3}+1\right )}\) \(65\)
parallelrisch \(-\frac {20 \ln \left (2\right ) {\mathrm e}^{6} x^{2}-4 \ln \left (2\right ) {\mathrm e}^{6} x -2 x^{2} {\mathrm e}^{6}-2 x \,{\mathrm e}^{3}}{2 \ln \left (2\right ) \left (10 \ln \left (2\right ) {\mathrm e}^{3} x^{2}-2 \,{\mathrm e}^{3} \ln \left (2\right ) x -x^{2} {\mathrm e}^{3}+10 x \ln \left (2\right )-2 \ln \left (2\right )-x \right )}\) \(80\)

input
int((2*(-50*x^2+20*x-2)*exp(3)^2*ln(2)+(10*x^2-4*x)*exp(3)^2-2*exp(3))/(4* 
((25*x^4-10*x^3+x^2)*exp(3)^2+(50*x^3-20*x^2+2*x)*exp(3)+25*x^2-10*x+1)*ln 
(2)^2+2*((-10*x^4+2*x^3)*exp(3)^2+(-20*x^3+4*x^2)*exp(3)-10*x^2+2*x)*ln(2) 
+x^4*exp(3)^2+2*x^3*exp(3)+x^2),x,method=_RETURNVERBOSE)
 
output
(x*exp(3)-1/5*exp(3))/(ln(2)*exp(3)*x^2-1/5*exp(3)*ln(2)*x-1/10*x^2*exp(3) 
+x*ln(2)-1/5*ln(2)-1/10*x)
 
3.28.81.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.74 \[ \int \frac {-2 e^3+e^6 \left (-4 x+10 x^2\right )+e^6 \left (-2+20 x-50 x^2\right ) \log (4)}{x^2+2 e^3 x^3+e^6 x^4+\left (2 x-10 x^2+e^3 \left (4 x^2-20 x^3\right )+e^6 \left (2 x^3-10 x^4\right )\right ) \log (4)+\left (1-10 x+25 x^2+e^3 \left (2 x-20 x^2+50 x^3\right )+e^6 \left (x^2-10 x^3+25 x^4\right )\right ) \log ^2(4)} \, dx=-\frac {2 \, {\left (5 \, x - 1\right )} e^{3}}{x^{2} e^{3} - 2 \, {\left ({\left (5 \, x^{2} - x\right )} e^{3} + 5 \, x - 1\right )} \log \left (2\right ) + x} \]

input
integrate((2*(-50*x^2+20*x-2)*exp(3)^2*log(2)+(10*x^2-4*x)*exp(3)^2-2*exp( 
3))/(4*((25*x^4-10*x^3+x^2)*exp(3)^2+(50*x^3-20*x^2+2*x)*exp(3)+25*x^2-10* 
x+1)*log(2)^2+2*((-10*x^4+2*x^3)*exp(3)^2+(-20*x^3+4*x^2)*exp(3)-10*x^2+2* 
x)*log(2)+x^4*exp(3)^2+2*x^3*exp(3)+x^2),x, algorithm=\
 
output
-2*(5*x - 1)*e^3/(x^2*e^3 - 2*((5*x^2 - x)*e^3 + 5*x - 1)*log(2) + x)
 
3.28.81.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 49 vs. \(2 (19) = 38\).

Time = 2.57 (sec) , antiderivative size = 49, normalized size of antiderivative = 2.13 \[ \int \frac {-2 e^3+e^6 \left (-4 x+10 x^2\right )+e^6 \left (-2+20 x-50 x^2\right ) \log (4)}{x^2+2 e^3 x^3+e^6 x^4+\left (2 x-10 x^2+e^3 \left (4 x^2-20 x^3\right )+e^6 \left (2 x^3-10 x^4\right )\right ) \log (4)+\left (1-10 x+25 x^2+e^3 \left (2 x-20 x^2+50 x^3\right )+e^6 \left (x^2-10 x^3+25 x^4\right )\right ) \log ^2(4)} \, dx=- \frac {- 10 x e^{3} + 2 e^{3}}{x^{2} \left (- e^{3} + 10 e^{3} \log {\left (2 \right )}\right ) + x \left (- 2 e^{3} \log {\left (2 \right )} - 1 + 10 \log {\left (2 \right )}\right ) - 2 \log {\left (2 \right )}} \]

input
integrate((2*(-50*x**2+20*x-2)*exp(3)**2*ln(2)+(10*x**2-4*x)*exp(3)**2-2*e 
xp(3))/(4*((25*x**4-10*x**3+x**2)*exp(3)**2+(50*x**3-20*x**2+2*x)*exp(3)+2 
5*x**2-10*x+1)*ln(2)**2+2*((-10*x**4+2*x**3)*exp(3)**2+(-20*x**3+4*x**2)*e 
xp(3)-10*x**2+2*x)*ln(2)+x**4*exp(3)**2+2*x**3*exp(3)+x**2),x)
 
output
-(-10*x*exp(3) + 2*exp(3))/(x**2*(-exp(3) + 10*exp(3)*log(2)) + x*(-2*exp( 
3)*log(2) - 1 + 10*log(2)) - 2*log(2))
 
3.28.81.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 47, normalized size of antiderivative = 2.04 \[ \int \frac {-2 e^3+e^6 \left (-4 x+10 x^2\right )+e^6 \left (-2+20 x-50 x^2\right ) \log (4)}{x^2+2 e^3 x^3+e^6 x^4+\left (2 x-10 x^2+e^3 \left (4 x^2-20 x^3\right )+e^6 \left (2 x^3-10 x^4\right )\right ) \log (4)+\left (1-10 x+25 x^2+e^3 \left (2 x-20 x^2+50 x^3\right )+e^6 \left (x^2-10 x^3+25 x^4\right )\right ) \log ^2(4)} \, dx=\frac {2 \, {\left (5 \, x e^{3} - e^{3}\right )}}{{\left (10 \, e^{3} \log \left (2\right ) - e^{3}\right )} x^{2} - {\left (2 \, {\left (e^{3} - 5\right )} \log \left (2\right ) + 1\right )} x - 2 \, \log \left (2\right )} \]

input
integrate((2*(-50*x^2+20*x-2)*exp(3)^2*log(2)+(10*x^2-4*x)*exp(3)^2-2*exp( 
3))/(4*((25*x^4-10*x^3+x^2)*exp(3)^2+(50*x^3-20*x^2+2*x)*exp(3)+25*x^2-10* 
x+1)*log(2)^2+2*((-10*x^4+2*x^3)*exp(3)^2+(-20*x^3+4*x^2)*exp(3)-10*x^2+2* 
x)*log(2)+x^4*exp(3)^2+2*x^3*exp(3)+x^2),x, algorithm=\
 
output
2*(5*x*e^3 - e^3)/((10*e^3*log(2) - e^3)*x^2 - (2*(e^3 - 5)*log(2) + 1)*x 
- 2*log(2))
 
3.28.81.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 50 vs. \(2 (24) = 48\).

Time = 0.28 (sec) , antiderivative size = 50, normalized size of antiderivative = 2.17 \[ \int \frac {-2 e^3+e^6 \left (-4 x+10 x^2\right )+e^6 \left (-2+20 x-50 x^2\right ) \log (4)}{x^2+2 e^3 x^3+e^6 x^4+\left (2 x-10 x^2+e^3 \left (4 x^2-20 x^3\right )+e^6 \left (2 x^3-10 x^4\right )\right ) \log (4)+\left (1-10 x+25 x^2+e^3 \left (2 x-20 x^2+50 x^3\right )+e^6 \left (x^2-10 x^3+25 x^4\right )\right ) \log ^2(4)} \, dx=\frac {2 \, {\left (5 \, x e^{3} - e^{3}\right )}}{10 \, x^{2} e^{3} \log \left (2\right ) - x^{2} e^{3} - 2 \, x e^{3} \log \left (2\right ) + 10 \, x \log \left (2\right ) - x - 2 \, \log \left (2\right )} \]

input
integrate((2*(-50*x^2+20*x-2)*exp(3)^2*log(2)+(10*x^2-4*x)*exp(3)^2-2*exp( 
3))/(4*((25*x^4-10*x^3+x^2)*exp(3)^2+(50*x^3-20*x^2+2*x)*exp(3)+25*x^2-10* 
x+1)*log(2)^2+2*((-10*x^4+2*x^3)*exp(3)^2+(-20*x^3+4*x^2)*exp(3)-10*x^2+2* 
x)*log(2)+x^4*exp(3)^2+2*x^3*exp(3)+x^2),x, algorithm=\
 
output
2*(5*x*e^3 - e^3)/(10*x^2*e^3*log(2) - x^2*e^3 - 2*x*e^3*log(2) + 10*x*log 
(2) - x - 2*log(2))
 
3.28.81.9 Mupad [F(-1)]

Timed out. \[ \int \frac {-2 e^3+e^6 \left (-4 x+10 x^2\right )+e^6 \left (-2+20 x-50 x^2\right ) \log (4)}{x^2+2 e^3 x^3+e^6 x^4+\left (2 x-10 x^2+e^3 \left (4 x^2-20 x^3\right )+e^6 \left (2 x^3-10 x^4\right )\right ) \log (4)+\left (1-10 x+25 x^2+e^3 \left (2 x-20 x^2+50 x^3\right )+e^6 \left (x^2-10 x^3+25 x^4\right )\right ) \log ^2(4)} \, dx=\text {Hanged} \]

input
int(-(2*exp(3) + exp(6)*(4*x - 10*x^2) + 2*exp(6)*log(2)*(50*x^2 - 20*x + 
2))/(2*log(2)*(2*x + exp(6)*(2*x^3 - 10*x^4) + exp(3)*(4*x^2 - 20*x^3) - 1 
0*x^2) + 4*log(2)^2*(exp(3)*(2*x - 20*x^2 + 50*x^3) - 10*x + exp(6)*(x^2 - 
 10*x^3 + 25*x^4) + 25*x^2 + 1) + 2*x^3*exp(3) + x^4*exp(6) + x^2),x)
 
output
\text{Hanged}