3.7.28 \(\int \frac {e^{\frac {-1+x^2 \log (2)}{x^2}} (8 x-2 x^2-8 x^3+3 x^4+e^{\frac {4}{\log ^2(3)}} (-8+2 x+4 x^2-2 x^3))}{16 x^6-8 x^7+x^8+e^{\frac {8}{\log ^2(3)}} (16 x^4-8 x^5+x^6)+e^{\frac {4}{\log ^2(3)}} (-32 x^5+16 x^6-2 x^7)} \, dx\) [628]

3.7.28.1 Optimal result
3.7.28.2 Mathematica [A] (verified)
3.7.28.3 Rubi [F]
3.7.28.4 Maple [A] (verified)
3.7.28.5 Fricas [A] (verification not implemented)
3.7.28.6 Sympy [B] (verification not implemented)
3.7.28.7 Maxima [A] (verification not implemented)
3.7.28.8 Giac [F]
3.7.28.9 Mupad [B] (verification not implemented)

3.7.28.1 Optimal result

Integrand size = 122, antiderivative size = 31 \[ \int \frac {e^{\frac {-1+x^2 \log (2)}{x^2}} \left (8 x-2 x^2-8 x^3+3 x^4+e^{\frac {4}{\log ^2(3)}} \left (-8+2 x+4 x^2-2 x^3\right )\right )}{16 x^6-8 x^7+x^8+e^{\frac {8}{\log ^2(3)}} \left (16 x^4-8 x^5+x^6\right )+e^{\frac {4}{\log ^2(3)}} \left (-32 x^5+16 x^6-2 x^7\right )} \, dx=\frac {2 e^{-\frac {1}{x^2}}}{\left (e^{\frac {4}{\log ^2(3)}}-x\right ) (-4+x) x} \]

output
exp(ln(2)-1/x^2)/(x-4)/x/(exp(4/ln(3)^2)-x)
 
3.7.28.2 Mathematica [A] (verified)

Time = 2.55 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.00 \[ \int \frac {e^{\frac {-1+x^2 \log (2)}{x^2}} \left (8 x-2 x^2-8 x^3+3 x^4+e^{\frac {4}{\log ^2(3)}} \left (-8+2 x+4 x^2-2 x^3\right )\right )}{16 x^6-8 x^7+x^8+e^{\frac {8}{\log ^2(3)}} \left (16 x^4-8 x^5+x^6\right )+e^{\frac {4}{\log ^2(3)}} \left (-32 x^5+16 x^6-2 x^7\right )} \, dx=\frac {2 e^{-\frac {1}{x^2}}}{\left (e^{\frac {4}{\log ^2(3)}}-x\right ) (-4+x) x} \]

input
Integrate[(E^((-1 + x^2*Log[2])/x^2)*(8*x - 2*x^2 - 8*x^3 + 3*x^4 + E^(4/L 
og[3]^2)*(-8 + 2*x + 4*x^2 - 2*x^3)))/(16*x^6 - 8*x^7 + x^8 + E^(8/Log[3]^ 
2)*(16*x^4 - 8*x^5 + x^6) + E^(4/Log[3]^2)*(-32*x^5 + 16*x^6 - 2*x^7)),x]
 
output
2/(E^x^(-2)*(E^(4/Log[3]^2) - x)*(-4 + x)*x)
 
3.7.28.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\frac {x^2 \log (2)-1}{x^2}} \left (3 x^4-8 x^3-2 x^2+\left (-2 x^3+4 x^2+2 x-8\right ) e^{\frac {4}{\log ^2(3)}}+8 x\right )}{x^8-8 x^7+16 x^6+\left (-2 x^7+16 x^6-32 x^5\right ) e^{\frac {4}{\log ^2(3)}}+\left (x^6-8 x^5+16 x^4\right ) e^{\frac {8}{\log ^2(3)}}} \, dx\)

\(\Big \downarrow \) 2026

\(\displaystyle \int \frac {e^{\frac {x^2 \log (2)-1}{x^2}} \left (3 x^4-8 x^3-2 x^2+\left (-2 x^3+4 x^2+2 x-8\right ) e^{\frac {4}{\log ^2(3)}}+8 x\right )}{x^4 \left (x^4-2 x^3 \left (4+e^{\frac {4}{\log ^2(3)}}\right )+x^2 \left (16+16 e^{\frac {4}{\log ^2(3)}}+e^{\frac {8}{\log ^2(3)}}\right )-8 x e^{\frac {4}{\log ^2(3)}} \left (4+e^{\frac {4}{\log ^2(3)}}\right )+16 e^{\frac {8}{\log ^2(3)}}\right )}dx\)

\(\Big \downarrow \) 2463

\(\displaystyle \int \left (\frac {2 e^{\frac {x^2 \log (2)-1}{x^2}} \left (3 x^4-8 x^3-2 x^2+\left (-2 x^3+4 x^2+2 x-8\right ) e^{\frac {4}{\log ^2(3)}}+8 x\right )}{x^4 \left (e^{\frac {4}{\log ^2(3)}}-4\right )^3 \left (e^{\frac {4}{\log ^2(3)}}-x\right )}+\frac {2 e^{\frac {x^2 \log (2)-1}{x^2}} \left (3 x^4-8 x^3-2 x^2+\left (-2 x^3+4 x^2+2 x-8\right ) e^{\frac {4}{\log ^2(3)}}+8 x\right )}{(x-4) x^4 \left (e^{\frac {4}{\log ^2(3)}}-4\right )^3}+\frac {e^{\frac {x^2 \log (2)-1}{x^2}} \left (3 x^4-8 x^3-2 x^2+\left (-2 x^3+4 x^2+2 x-8\right ) e^{\frac {4}{\log ^2(3)}}+8 x\right )}{x^4 \left (e^{\frac {4}{\log ^2(3)}}-4\right )^2 \left (e^{\frac {4}{\log ^2(3)}}-x\right )^2}+\frac {e^{\frac {x^2 \log (2)-1}{x^2}} \left (3 x^4-8 x^3-2 x^2+\left (-2 x^3+4 x^2+2 x-8\right ) e^{\frac {4}{\log ^2(3)}}+8 x\right )}{(x-4)^2 x^4 \left (e^{\frac {4}{\log ^2(3)}}-4\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \int \frac {e^{-\frac {4}{\log ^2(3)}-\frac {1}{x^2}}}{\left (e^{\frac {4}{\log ^2(3)}}-x\right )^2}dx}{4-e^{\frac {4}{\log ^2(3)}}}-\frac {4 \left (4-e^{\frac {4}{\log ^2(3)}}+e^{\frac {12}{\log ^2(3)}}\right ) \int \frac {e^{-\frac {16}{\log ^2(3)}-\frac {1}{x^2}}}{e^{\frac {4}{\log ^2(3)}}-x}dx}{\left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}+\frac {4 \int \frac {e^{-\frac {4}{\log ^2(3)}-\frac {1}{x^2}}}{e^{\frac {4}{\log ^2(3)}}-x}dx}{\left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}+\frac {\int \frac {e^{-\frac {1}{x^2}}}{(x-4)^2}dx}{2 \left (4-e^{\frac {4}{\log ^2(3)}}\right )}+\frac {\left (60+e^{\frac {4}{\log ^2(3)}}\right ) \int \frac {e^{-\frac {1}{x^2}}}{x-4}dx}{64 \left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}-\frac {\int \frac {e^{-\frac {1}{x^2}}}{x-4}dx}{\left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}+\frac {2 \sqrt {\pi } e^{-\frac {12}{\log ^2(3)}} \left (4-e^{\frac {4}{\log ^2(3)}}-2 e^{\frac {8}{\log ^2(3)}}\right ) \text {erf}\left (\frac {1}{x}\right )}{\left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}-\frac {\sqrt {\pi } \left (4+7 e^{\frac {4}{\log ^2(3)}}\right ) \text {erf}\left (\frac {1}{x}\right )}{32 \left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}+\frac {\sqrt {\pi } e^{\frac {4}{\log ^2(3)}} \text {erf}\left (\frac {1}{x}\right )}{4 \left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}+\frac {4 \sqrt {\pi } e^{-\frac {4}{\log ^2(3)}} \text {erf}\left (\frac {1}{x}\right )}{\left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}+\frac {2 e^{-\frac {16}{\log ^2(3)}} \left (4-e^{\frac {4}{\log ^2(3)}}+e^{\frac {12}{\log ^2(3)}}\right ) \operatorname {ExpIntegralEi}\left (-\frac {1}{x^2}\right )}{\left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}+\frac {\left (60+e^{\frac {4}{\log ^2(3)}}\right ) \operatorname {ExpIntegralEi}\left (-\frac {1}{x^2}\right )}{128 \left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}+\frac {\left (8+e^{\frac {4}{\log ^2(3)}}\right ) \operatorname {ExpIntegralEi}\left (-\frac {1}{x^2}\right )}{2 \left (4-e^{\frac {4}{\log ^2(3)}}\right )^3}-\frac {4 \left (1+2 e^{-\frac {4}{\log ^2(3)}}\right ) \operatorname {ExpIntegralEi}\left (-\frac {1}{x^2}\right )}{\left (4-e^{\frac {4}{\log ^2(3)}}\right )^3}-\frac {8 e^{-\frac {1}{x^2}-\frac {4}{\log ^2(3)}}}{x \left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}-\frac {e^{\frac {4}{\log ^2(3)}-\frac {1}{x^2}}}{2 x \left (4-e^{\frac {4}{\log ^2(3)}}\right )^2}+\frac {16 e^{-\frac {1}{x^2}}}{x \left (4-e^{\frac {4}{\log ^2(3)}}\right )^3}-\frac {4 e^{\frac {4}{\log ^2(3)}-\frac {1}{x^2}}}{x \left (4-e^{\frac {4}{\log ^2(3)}}\right )^3}+\frac {e^{-\frac {1}{x^2}}}{8 \left (4-e^{\frac {4}{\log ^2(3)}}\right )}-\frac {2 e^{-\frac {1}{x^2}-\frac {8}{\log ^2(3)}}}{4-e^{\frac {4}{\log ^2(3)}}}\)

input
Int[(E^((-1 + x^2*Log[2])/x^2)*(8*x - 2*x^2 - 8*x^3 + 3*x^4 + E^(4/Log[3]^ 
2)*(-8 + 2*x + 4*x^2 - 2*x^3)))/(16*x^6 - 8*x^7 + x^8 + E^(8/Log[3]^2)*(16 
*x^4 - 8*x^5 + x^6) + E^(4/Log[3]^2)*(-32*x^5 + 16*x^6 - 2*x^7)),x]
 
output
$Aborted
 

3.7.28.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2026
Int[(Fx_.)*(Px_)^(p_.), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Int[x^(p 
*r)*ExpandToSum[Px/x^r, x]^p*Fx, x] /; IGtQ[r, 0]] /; PolyQ[Px, x] && Integ 
erQ[p] &&  !MonomialQ[Px, x] && (ILtQ[p, 0] ||  !PolyQ[u, x])
 

rule 2463
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px]}, Int[ExpandIntegr 
and[u, Qx^p, x], x] /;  !SumQ[NonfreeFactors[Qx, x]]] /; PolyQ[Px, x] && Gt 
Q[Expon[Px, x], 2] &&  !BinomialQ[Px, x] &&  !TrinomialQ[Px, x] && ILtQ[p, 
0]
 
3.7.28.4 Maple [A] (verified)

Time = 0.85 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.16

method result size
norman \(\frac {{\mathrm e}^{\frac {x^{2} \ln \left (2\right )-1}{x^{2}}}}{x \left (x -4\right ) \left ({\mathrm e}^{\frac {4}{\ln \left (3\right )^{2}}}-x \right )}\) \(36\)
parallelrisch \(\frac {{\mathrm e}^{\frac {x^{2} \ln \left (2\right )-1}{x^{2}}}}{x \left ({\mathrm e}^{\frac {4}{\ln \left (3\right )^{2}}} x -x^{2}-4 \,{\mathrm e}^{\frac {4}{\ln \left (3\right )^{2}}}+4 x \right )}\) \(47\)

input
int(((-2*x^3+4*x^2+2*x-8)*exp(4/ln(3)^2)+3*x^4-8*x^3-2*x^2+8*x)*exp((x^2*l 
n(2)-1)/x^2)/((x^6-8*x^5+16*x^4)*exp(4/ln(3)^2)^2+(-2*x^7+16*x^6-32*x^5)*e 
xp(4/ln(3)^2)+x^8-8*x^7+16*x^6),x,method=_RETURNVERBOSE)
 
output
1/x*exp((x^2*ln(2)-1)/x^2)/(x-4)/(exp(4/ln(3)^2)-x)
 
3.7.28.5 Fricas [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.35 \[ \int \frac {e^{\frac {-1+x^2 \log (2)}{x^2}} \left (8 x-2 x^2-8 x^3+3 x^4+e^{\frac {4}{\log ^2(3)}} \left (-8+2 x+4 x^2-2 x^3\right )\right )}{16 x^6-8 x^7+x^8+e^{\frac {8}{\log ^2(3)}} \left (16 x^4-8 x^5+x^6\right )+e^{\frac {4}{\log ^2(3)}} \left (-32 x^5+16 x^6-2 x^7\right )} \, dx=-\frac {e^{\left (\frac {x^{2} \log \left (2\right ) - 1}{x^{2}}\right )}}{x^{3} - 4 \, x^{2} - {\left (x^{2} - 4 \, x\right )} e^{\left (\frac {4}{\log \left (3\right )^{2}}\right )}} \]

input
integrate(((-2*x^3+4*x^2+2*x-8)*exp(4/log(3)^2)+3*x^4-8*x^3-2*x^2+8*x)*exp 
((x^2*log(2)-1)/x^2)/((x^6-8*x^5+16*x^4)*exp(4/log(3)^2)^2+(-2*x^7+16*x^6- 
32*x^5)*exp(4/log(3)^2)+x^8-8*x^7+16*x^6),x, algorithm=\
 
output
-e^((x^2*log(2) - 1)/x^2)/(x^3 - 4*x^2 - (x^2 - 4*x)*e^(4/log(3)^2))
 
3.7.28.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 46 vs. \(2 (22) = 44\).

Time = 0.17 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.48 \[ \int \frac {e^{\frac {-1+x^2 \log (2)}{x^2}} \left (8 x-2 x^2-8 x^3+3 x^4+e^{\frac {4}{\log ^2(3)}} \left (-8+2 x+4 x^2-2 x^3\right )\right )}{16 x^6-8 x^7+x^8+e^{\frac {8}{\log ^2(3)}} \left (16 x^4-8 x^5+x^6\right )+e^{\frac {4}{\log ^2(3)}} \left (-32 x^5+16 x^6-2 x^7\right )} \, dx=- \frac {e^{\frac {x^{2} \log {\left (2 \right )} - 1}{x^{2}}}}{x^{3} - x^{2} e^{\frac {4}{\log {\left (3 \right )}^{2}}} - 4 x^{2} + 4 x e^{\frac {4}{\log {\left (3 \right )}^{2}}}} \]

input
integrate(((-2*x**3+4*x**2+2*x-8)*exp(4/ln(3)**2)+3*x**4-8*x**3-2*x**2+8*x 
)*exp((x**2*ln(2)-1)/x**2)/((x**6-8*x**5+16*x**4)*exp(4/ln(3)**2)**2+(-2*x 
**7+16*x**6-32*x**5)*exp(4/ln(3)**2)+x**8-8*x**7+16*x**6),x)
 
output
-exp((x**2*log(2) - 1)/x**2)/(x**3 - x**2*exp(4/log(3)**2) - 4*x**2 + 4*x* 
exp(4/log(3)**2))
 
3.7.28.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.23 \[ \int \frac {e^{\frac {-1+x^2 \log (2)}{x^2}} \left (8 x-2 x^2-8 x^3+3 x^4+e^{\frac {4}{\log ^2(3)}} \left (-8+2 x+4 x^2-2 x^3\right )\right )}{16 x^6-8 x^7+x^8+e^{\frac {8}{\log ^2(3)}} \left (16 x^4-8 x^5+x^6\right )+e^{\frac {4}{\log ^2(3)}} \left (-32 x^5+16 x^6-2 x^7\right )} \, dx=-\frac {2 \, e^{\left (-\frac {1}{x^{2}}\right )}}{x^{3} - x^{2} {\left (e^{\left (\frac {4}{\log \left (3\right )^{2}}\right )} + 4\right )} + 4 \, x e^{\left (\frac {4}{\log \left (3\right )^{2}}\right )}} \]

input
integrate(((-2*x^3+4*x^2+2*x-8)*exp(4/log(3)^2)+3*x^4-8*x^3-2*x^2+8*x)*exp 
((x^2*log(2)-1)/x^2)/((x^6-8*x^5+16*x^4)*exp(4/log(3)^2)^2+(-2*x^7+16*x^6- 
32*x^5)*exp(4/log(3)^2)+x^8-8*x^7+16*x^6),x, algorithm=\
 
output
-2*e^(-1/x^2)/(x^3 - x^2*(e^(4/log(3)^2) + 4) + 4*x*e^(4/log(3)^2))
 
3.7.28.8 Giac [F]

\[ \int \frac {e^{\frac {-1+x^2 \log (2)}{x^2}} \left (8 x-2 x^2-8 x^3+3 x^4+e^{\frac {4}{\log ^2(3)}} \left (-8+2 x+4 x^2-2 x^3\right )\right )}{16 x^6-8 x^7+x^8+e^{\frac {8}{\log ^2(3)}} \left (16 x^4-8 x^5+x^6\right )+e^{\frac {4}{\log ^2(3)}} \left (-32 x^5+16 x^6-2 x^7\right )} \, dx=\int { \frac {{\left (3 \, x^{4} - 8 \, x^{3} - 2 \, x^{2} - 2 \, {\left (x^{3} - 2 \, x^{2} - x + 4\right )} e^{\left (\frac {4}{\log \left (3\right )^{2}}\right )} + 8 \, x\right )} e^{\left (\frac {x^{2} \log \left (2\right ) - 1}{x^{2}}\right )}}{x^{8} - 8 \, x^{7} + 16 \, x^{6} + {\left (x^{6} - 8 \, x^{5} + 16 \, x^{4}\right )} e^{\left (\frac {8}{\log \left (3\right )^{2}}\right )} - 2 \, {\left (x^{7} - 8 \, x^{6} + 16 \, x^{5}\right )} e^{\left (\frac {4}{\log \left (3\right )^{2}}\right )}} \,d x } \]

input
integrate(((-2*x^3+4*x^2+2*x-8)*exp(4/log(3)^2)+3*x^4-8*x^3-2*x^2+8*x)*exp 
((x^2*log(2)-1)/x^2)/((x^6-8*x^5+16*x^4)*exp(4/log(3)^2)^2+(-2*x^7+16*x^6- 
32*x^5)*exp(4/log(3)^2)+x^8-8*x^7+16*x^6),x, algorithm=\
 
output
undef
 
3.7.28.9 Mupad [B] (verification not implemented)

Time = 9.39 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.32 \[ \int \frac {e^{\frac {-1+x^2 \log (2)}{x^2}} \left (8 x-2 x^2-8 x^3+3 x^4+e^{\frac {4}{\log ^2(3)}} \left (-8+2 x+4 x^2-2 x^3\right )\right )}{16 x^6-8 x^7+x^8+e^{\frac {8}{\log ^2(3)}} \left (16 x^4-8 x^5+x^6\right )+e^{\frac {4}{\log ^2(3)}} \left (-32 x^5+16 x^6-2 x^7\right )} \, dx=-\frac {2\,{\mathrm {e}}^{-\frac {1}{x^2}}}{4\,x\,{\mathrm {e}}^{\frac {4}{{\ln \left (3\right )}^2}}-x^2\,{\mathrm {e}}^{\frac {4}{{\ln \left (3\right )}^2}}-4\,x^2+x^3} \]

input
int((exp((x^2*log(2) - 1)/x^2)*(8*x + exp(4/log(3)^2)*(2*x + 4*x^2 - 2*x^3 
 - 8) - 2*x^2 - 8*x^3 + 3*x^4))/(exp(8/log(3)^2)*(16*x^4 - 8*x^5 + x^6) + 
16*x^6 - 8*x^7 + x^8 - exp(4/log(3)^2)*(32*x^5 - 16*x^6 + 2*x^7)),x)
 
output
-(2*exp(-1/x^2))/(4*x*exp(4/log(3)^2) - x^2*exp(4/log(3)^2) - 4*x^2 + x^3)