3.14.27 \(\int \frac {6 x+3 x^2+2 x \log (\frac {1+2 e^3+e^6}{4 e^6})}{9+18 x+9 x^2+(6+6 x) \log (\frac {1+2 e^3+e^6}{4 e^6})+\log ^2(\frac {1+2 e^3+e^6}{4 e^6})} \, dx\) [1327]

3.14.27.1 Optimal result
3.14.27.2 Mathematica [B] (verified)
3.14.27.3 Rubi [A] (verified)
3.14.27.4 Maple [A] (verified)
3.14.27.5 Fricas [B] (verification not implemented)
3.14.27.6 Sympy [B] (verification not implemented)
3.14.27.7 Maxima [B] (verification not implemented)
3.14.27.8 Giac [B] (verification not implemented)
3.14.27.9 Mupad [B] (verification not implemented)

3.14.27.1 Optimal result

Integrand size = 87, antiderivative size = 23 \[ \int \frac {6 x+3 x^2+2 x \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )}{9+18 x+9 x^2+(6+6 x) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )} \, dx=\frac {x^2}{3+3 x+\log \left (\frac {1}{4} \left (1+\frac {1}{e^3}\right )^2\right )} \]

output
x^2/(ln(1/4*(1/exp(3)+1)^2)+3*x+3)
 
3.14.27.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(54\) vs. \(2(23)=46\).

Time = 0.03 (sec) , antiderivative size = 54, normalized size of antiderivative = 2.35 \[ \int \frac {6 x+3 x^2+2 x \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )}{9+18 x+9 x^2+(6+6 x) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )} \, dx=\frac {1}{9} \left (-3+3 x-\log (4)-\frac {\left (3+\log (4)-2 \log \left (1+e^3\right )\right )^2}{3-3 x+\log (4)-2 \log \left (1+e^3\right )}+2 \log \left (1+e^3\right )\right ) \]

input
Integrate[(6*x + 3*x^2 + 2*x*Log[(1 + 2*E^3 + E^6)/(4*E^6)])/(9 + 18*x + 9 
*x^2 + (6 + 6*x)*Log[(1 + 2*E^3 + E^6)/(4*E^6)] + Log[(1 + 2*E^3 + E^6)/(4 
*E^6)]^2),x]
 
output
(-3 + 3*x - Log[4] - (3 + Log[4] - 2*Log[1 + E^3])^2/(3 - 3*x + Log[4] - 2 
*Log[1 + E^3]) + 2*Log[1 + E^3])/9
 
3.14.27.3 Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.78, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {6, 2027, 2082, 1184, 27, 83}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {3 x^2+6 x+2 x \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )}{9 x^2+18 x+(6 x+6) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+9+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )} \, dx\)

\(\Big \downarrow \) 6

\(\displaystyle \int \frac {3 x^2+x \left (6+2 \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )\right )}{9 x^2+18 x+(6 x+6) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+9+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )}dx\)

\(\Big \downarrow \) 2027

\(\displaystyle \int \frac {x \left (3 x+6+2 \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )\right )}{9 x^2+18 x+(6 x+6) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+9+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )}dx\)

\(\Big \downarrow \) 2082

\(\displaystyle \int \frac {x \left (3 x-2 \left (3+\log (4)-2 \log \left (1+e^3\right )\right )\right )}{9 x^2-6 x \left (3+\log (4)-2 \log \left (1+e^3\right )\right )+\left (3+\log (4)-2 \log \left (1+e^3\right )\right )^2}dx\)

\(\Big \downarrow \) 1184

\(\displaystyle 9 \int \frac {x \left (3 x-2 \left (3+\log (4)-2 \log \left (1+e^3\right )\right )\right )}{9 \left (-3 x-2 \log \left (1+e^3\right )+\log (4)+3\right )^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {x \left (3 x-2 \left (3+\log (4)-2 \log \left (1+e^3\right )\right )\right )}{\left (-3 x+3-2 \log \left (1+e^3\right )+\log (4)\right )^2}dx\)

\(\Big \downarrow \) 83

\(\displaystyle -\frac {\left (3 x-2 \left (3+\log (4)-2 \log \left (1+e^3\right )\right )\right )^2}{9 \left (-3 x+3-2 \log \left (1+e^3\right )+\log (4)\right )}\)

input
Int[(6*x + 3*x^2 + 2*x*Log[(1 + 2*E^3 + E^6)/(4*E^6)])/(9 + 18*x + 9*x^2 + 
 (6 + 6*x)*Log[(1 + 2*E^3 + E^6)/(4*E^6)] + Log[(1 + 2*E^3 + E^6)/(4*E^6)] 
^2),x]
 
output
-1/9*(3*x - 2*(3 + Log[4] - 2*Log[1 + E^3]))^2/(3 - 3*x + Log[4] - 2*Log[1 
 + E^3])
 

3.14.27.3.1 Defintions of rubi rules used

rule 6
Int[(u_.)*((v_.) + (a_.)*(Fx_) + (b_.)*(Fx_))^(p_.), x_Symbol] :> Int[u*(v 
+ (a + b)*Fx)^p, x] /; FreeQ[{a, b}, x] &&  !FreeQ[Fx, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 83
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] && EqQ[a*d*f 
*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)), 0]
 

rule 1184
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_ 
) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/c^p   Int[(d + e*x)^m*(f + g*x 
)^n*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && E 
qQ[b^2 - 4*a*c, 0] && IntegerQ[p]
 

rule 2027
Int[(Fx_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(p_.), x_Symbol] :> Int[x^ 
(p*r)*(a + b*x^(s - r))^p*Fx, x] /; FreeQ[{a, b, r, s}, x] && IntegerQ[p] & 
& PosQ[s - r] &&  !(EqQ[p, 1] && EqQ[u, 1])
 

rule 2082
Int[(u_)^(m_.)*(v_)^(n_.)*(w_)^(p_.), x_Symbol] :> Int[ExpandToSum[u, x]^m* 
ExpandToSum[v, x]^n*ExpandToSum[w, x]^p, x] /; FreeQ[{m, n, p}, x] && Linea 
rQ[{u, v}, x] && QuadraticQ[w, x] &&  !(LinearMatchQ[{u, v}, x] && Quadrati 
cMatchQ[w, x])
 
3.14.27.4 Maple [A] (verified)

Time = 0.09 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09

method result size
norman \(\frac {x^{2}}{\ln \left (\frac {{\mathrm e}^{6}}{4}+\frac {{\mathrm e}^{3}}{2}+\frac {1}{4}\right )+3 x -3}\) \(25\)
gosper \(\frac {x^{2}}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3+3 x}\) \(29\)
parallelrisch \(\frac {x^{2}}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3+3 x}\) \(29\)
default \(\frac {x}{3}-\frac {-\frac {{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )}^{2}}{9}-\frac {2 \ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )}{3}-1}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3+3 x}\) \(61\)
risch \(\frac {x}{3}+\frac {2 \ln \left ({\mathrm e}^{3}+1\right )^{2}}{9 \left (-\ln \left (2\right )+\ln \left ({\mathrm e}^{3}+1\right )-\frac {3}{2}+\frac {3 x}{2}\right )}-\frac {4 \ln \left (2\right ) \ln \left ({\mathrm e}^{3}+1\right )}{9 \left (-\ln \left (2\right )+\ln \left ({\mathrm e}^{3}+1\right )-\frac {3}{2}+\frac {3 x}{2}\right )}+\frac {2 \ln \left (2\right )^{2}}{9 \left (-\ln \left (2\right )+\ln \left ({\mathrm e}^{3}+1\right )-\frac {3}{2}+\frac {3 x}{2}\right )}-\frac {2 \ln \left ({\mathrm e}^{3}+1\right )}{3 \left (-\ln \left (2\right )+\ln \left ({\mathrm e}^{3}+1\right )-\frac {3}{2}+\frac {3 x}{2}\right )}+\frac {2 \ln \left (2\right )}{3 \left (-\ln \left (2\right )+\ln \left ({\mathrm e}^{3}+1\right )-\frac {3}{2}+\frac {3 x}{2}\right )}+\frac {1}{-2 \ln \left (2\right )+2 \ln \left ({\mathrm e}^{3}+1\right )-3+3 x}\) \(138\)
meijerg \(\left (\frac {2 \ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )}{9}+\frac {2}{3}\right ) \left (-\frac {3 x}{\left (\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3\right ) \left (1+\frac {3 x}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3}\right )}+\ln \left (1+\frac {3 x}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3}\right )\right )+\frac {{\left (\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3\right )}^{2} \left (\frac {x \left (\frac {9 x}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3}+6\right )}{\left (\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3\right ) \left (1+\frac {3 x}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3}\right )}-2 \ln \left (1+\frac {3 x}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3}\right )\right )}{9 \ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+27}\) \(217\)

input
int((2*x*ln(1/4*(exp(3)^2+2*exp(3)+1)/exp(3)^2)+3*x^2+6*x)/(ln(1/4*(exp(3) 
^2+2*exp(3)+1)/exp(3)^2)^2+(6+6*x)*ln(1/4*(exp(3)^2+2*exp(3)+1)/exp(3)^2)+ 
9*x^2+18*x+9),x,method=_RETURNVERBOSE)
 
output
x^2/(ln(1/4*exp(3)^2+1/2*exp(3)+1/4)+3*x-3)
 
3.14.27.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 65 vs. \(2 (20) = 40\).

Time = 0.24 (sec) , antiderivative size = 65, normalized size of antiderivative = 2.83 \[ \int \frac {6 x+3 x^2+2 x \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )}{9+18 x+9 x^2+(6+6 x) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )} \, dx=\frac {9 \, x^{2} + 3 \, {\left (x + 2\right )} \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right )^{2} + 9 \, x + 9}{9 \, {\left (3 \, x + \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + 3\right )}} \]

input
integrate((2*x*log(1/4*(exp(3)^2+2*exp(3)+1)/exp(3)^2)+3*x^2+6*x)/(log(1/4 
*(exp(3)^2+2*exp(3)+1)/exp(3)^2)^2+(6+6*x)*log(1/4*(exp(3)^2+2*exp(3)+1)/e 
xp(3)^2)+9*x^2+18*x+9),x, algorithm=\
 
output
1/9*(9*x^2 + 3*(x + 2)*log(1/4*(e^6 + 2*e^3 + 1)*e^(-6)) + log(1/4*(e^6 + 
2*e^3 + 1)*e^(-6))^2 + 9*x + 9)/(3*x + log(1/4*(e^6 + 2*e^3 + 1)*e^(-6)) + 
 3)
 
3.14.27.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 83 vs. \(2 (19) = 38\).

Time = 0.39 (sec) , antiderivative size = 83, normalized size of antiderivative = 3.61 \[ \int \frac {6 x+3 x^2+2 x \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )}{9+18 x+9 x^2+(6+6 x) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )} \, dx=\frac {x}{3} + \frac {- 6 \log {\left (1 + 2 e^{3} + e^{6} \right )} - 4 \log {\left (2 \right )} \log {\left (1 + 2 e^{3} + e^{6} \right )} + 4 \log {\left (2 \right )}^{2} + 12 \log {\left (2 \right )} + 9 + \log {\left (1 + 2 e^{3} + e^{6} \right )}^{2}}{27 x - 27 - 18 \log {\left (2 \right )} + 9 \log {\left (1 + 2 e^{3} + e^{6} \right )}} \]

input
integrate((2*x*ln(1/4*(exp(3)**2+2*exp(3)+1)/exp(3)**2)+3*x**2+6*x)/(ln(1/ 
4*(exp(3)**2+2*exp(3)+1)/exp(3)**2)**2+(6+6*x)*ln(1/4*(exp(3)**2+2*exp(3)+ 
1)/exp(3)**2)+9*x**2+18*x+9),x)
 
output
x/3 + (-6*log(1 + 2*exp(3) + exp(6)) - 4*log(2)*log(1 + 2*exp(3) + exp(6)) 
 + 4*log(2)**2 + 12*log(2) + 9 + log(1 + 2*exp(3) + exp(6))**2)/(27*x - 27 
 - 18*log(2) + 9*log(1 + 2*exp(3) + exp(6)))
 
3.14.27.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 58 vs. \(2 (20) = 40\).

Time = 0.19 (sec) , antiderivative size = 58, normalized size of antiderivative = 2.52 \[ \int \frac {6 x+3 x^2+2 x \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )}{9+18 x+9 x^2+(6+6 x) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )} \, dx=\frac {1}{3} \, x + \frac {\log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right )^{2} + 6 \, \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + 9}{9 \, {\left (3 \, x + \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + 3\right )}} \]

input
integrate((2*x*log(1/4*(exp(3)^2+2*exp(3)+1)/exp(3)^2)+3*x^2+6*x)/(log(1/4 
*(exp(3)^2+2*exp(3)+1)/exp(3)^2)^2+(6+6*x)*log(1/4*(exp(3)^2+2*exp(3)+1)/e 
xp(3)^2)+9*x^2+18*x+9),x, algorithm=\
 
output
1/3*x + 1/9*(log(1/4*(e^6 + 2*e^3 + 1)*e^(-6))^2 + 6*log(1/4*(e^6 + 2*e^3 
+ 1)*e^(-6)) + 9)/(3*x + log(1/4*(e^6 + 2*e^3 + 1)*e^(-6)) + 3)
 
3.14.27.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 58 vs. \(2 (20) = 40\).

Time = 0.25 (sec) , antiderivative size = 58, normalized size of antiderivative = 2.52 \[ \int \frac {6 x+3 x^2+2 x \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )}{9+18 x+9 x^2+(6+6 x) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )} \, dx=\frac {1}{3} \, x + \frac {\log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right )^{2} + 6 \, \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + 9}{9 \, {\left (3 \, x + \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + 3\right )}} \]

input
integrate((2*x*log(1/4*(exp(3)^2+2*exp(3)+1)/exp(3)^2)+3*x^2+6*x)/(log(1/4 
*(exp(3)^2+2*exp(3)+1)/exp(3)^2)^2+(6+6*x)*log(1/4*(exp(3)^2+2*exp(3)+1)/e 
xp(3)^2)+9*x^2+18*x+9),x, algorithm=\
 
output
1/3*x + 1/9*(log(1/4*(e^6 + 2*e^3 + 1)*e^(-6))^2 + 6*log(1/4*(e^6 + 2*e^3 
+ 1)*e^(-6)) + 9)/(3*x + log(1/4*(e^6 + 2*e^3 + 1)*e^(-6)) + 3)
 
3.14.27.9 Mupad [B] (verification not implemented)

Time = 11.08 (sec) , antiderivative size = 196, normalized size of antiderivative = 8.52 \[ \int \frac {6 x+3 x^2+2 x \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )}{9+18 x+9 x^2+(6+6 x) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )} \, dx=\frac {x}{3}-\frac {2\,\mathrm {atan}\left (\frac {\frac {\left (\ln \left (\frac {{\left ({\mathrm {e}}^3+1\right )}^{12}}{4096}\right )-18\right )\,\left (\ln \left (\frac {4096}{{\left ({\mathrm {e}}^3+1\right )}^{12}}\right )+4\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2+9\right )}{3\,\sqrt {144\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2-{\ln \left (\frac {{\left ({\mathrm {e}}^3+1\right )}^{12}}{4096}\right )}^2}}+\frac {x\,\left (\ln \left (\frac {105312291668557186697918027683670432318895095400549111254310977536}{{\left ({\mathrm {e}}^3+1\right )}^{216}}\right )+72\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2+162\right )}{3\,\sqrt {144\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2-{\ln \left (\frac {{\left ({\mathrm {e}}^3+1\right )}^{12}}{4096}\right )}^2}}}{\ln \left (\frac {16}{{\left ({\mathrm {e}}^3+1\right )}^4}\right )+\frac {4\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2}{3}+3}\right )\,\left (\ln \left (\frac {4096}{{\left ({\mathrm {e}}^3+1\right )}^{12}}\right )+4\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2+9\right )}{3\,\sqrt {144\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2-{\ln \left (\frac {{\left ({\mathrm {e}}^3+1\right )}^{12}}{4096}\right )}^2}} \]

input
int((6*x + 3*x^2 + 2*x*log(exp(-6)*(exp(3)/2 + exp(6)/4 + 1/4)))/(18*x + l 
og(exp(-6)*(exp(3)/2 + exp(6)/4 + 1/4))^2 + log(exp(-6)*(exp(3)/2 + exp(6) 
/4 + 1/4))*(6*x + 6) + 9*x^2 + 9),x)
 
output
x/3 - (2*atan((((log((exp(3) + 1)^12/4096) - 18)*(log(4096/(exp(3) + 1)^12 
) + 4*log(exp(3)/2 + 1/2)^2 + 9))/(3*(144*log(exp(3)/2 + 1/2)^2 - log((exp 
(3) + 1)^12/4096)^2)^(1/2)) + (x*(log(105312291668557186697918027683670432 
318895095400549111254310977536/(exp(3) + 1)^216) + 72*log(exp(3)/2 + 1/2)^ 
2 + 162))/(3*(144*log(exp(3)/2 + 1/2)^2 - log((exp(3) + 1)^12/4096)^2)^(1/ 
2)))/(log(16/(exp(3) + 1)^4) + (4*log(exp(3)/2 + 1/2)^2)/3 + 3))*(log(4096 
/(exp(3) + 1)^12) + 4*log(exp(3)/2 + 1/2)^2 + 9))/(3*(144*log(exp(3)/2 + 1 
/2)^2 - log((exp(3) + 1)^12/4096)^2)^(1/2))