3.23.94 \(\int \frac {-24 x^3 \log (20)+e^x (x^3-2 x^4) \log (20)}{-2641807540224 e^2+990677827584 e^{2+x}-165112971264 e^{2+2 x}+16052649984 e^{2+3 x}-1003290624 e^{2+4 x}+41803776 e^{2+5 x}-1161216 e^{2+6 x}+20736 e^{2+7 x}-216 e^{2+8 x}+e^{2+9 x}} \, dx\) [2294]

3.23.94.1 Optimal result
3.23.94.2 Mathematica [A] (verified)
3.23.94.3 Rubi [F]
3.23.94.4 Maple [A] (verified)
3.23.94.5 Fricas [B] (verification not implemented)
3.23.94.6 Sympy [B] (verification not implemented)
3.23.94.7 Maxima [B] (verification not implemented)
3.23.94.8 Giac [B] (verification not implemented)
3.23.94.9 Mupad [B] (verification not implemented)

3.23.94.1 Optimal result

Integrand size = 109, antiderivative size = 19 \[ \int \frac {-24 x^3 \log (20)+e^x \left (x^3-2 x^4\right ) \log (20)}{-2641807540224 e^2+990677827584 e^{2+x}-165112971264 e^{2+2 x}+16052649984 e^{2+3 x}-1003290624 e^{2+4 x}+41803776 e^{2+5 x}-1161216 e^{2+6 x}+20736 e^{2+7 x}-216 e^{2+8 x}+e^{2+9 x}} \, dx=\frac {x^4 \log (20)}{4 e^2 \left (-24+e^x\right )^8} \]

output
1/4*ln(20)/exp(1)^2*x^4/(-24+exp(x))^8
 
3.23.94.2 Mathematica [A] (verified)

Time = 0.79 (sec) , antiderivative size = 19, normalized size of antiderivative = 1.00 \[ \int \frac {-24 x^3 \log (20)+e^x \left (x^3-2 x^4\right ) \log (20)}{-2641807540224 e^2+990677827584 e^{2+x}-165112971264 e^{2+2 x}+16052649984 e^{2+3 x}-1003290624 e^{2+4 x}+41803776 e^{2+5 x}-1161216 e^{2+6 x}+20736 e^{2+7 x}-216 e^{2+8 x}+e^{2+9 x}} \, dx=\frac {x^4 \log (20)}{4 e^2 \left (-24+e^x\right )^8} \]

input
Integrate[(-24*x^3*Log[20] + E^x*(x^3 - 2*x^4)*Log[20])/(-2641807540224*E^ 
2 + 990677827584*E^(2 + x) - 165112971264*E^(2 + 2*x) + 16052649984*E^(2 + 
 3*x) - 1003290624*E^(2 + 4*x) + 41803776*E^(2 + 5*x) - 1161216*E^(2 + 6*x 
) + 20736*E^(2 + 7*x) - 216*E^(2 + 8*x) + E^(2 + 9*x)),x]
 
output
(x^4*Log[20])/(4*E^2*(-24 + E^x)^8)
 
3.23.94.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^x \left (x^3-2 x^4\right ) \log (20)-24 x^3 \log (20)}{990677827584 e^{x+2}-165112971264 e^{2 x+2}+16052649984 e^{3 x+2}-1003290624 e^{4 x+2}+41803776 e^{5 x+2}-1161216 e^{6 x+2}+20736 e^{7 x+2}-216 e^{8 x+2}+e^{9 x+2}-2641807540224 e^2} \, dx\)

\(\Big \downarrow \) 7239

\(\displaystyle \int \frac {x^3 \left (e^x (2 x-1)+24\right ) \log (20)}{e^2 \left (24-e^x\right )^9}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\log (20) \int \frac {\left (24-e^x (1-2 x)\right ) x^3}{\left (24-e^x\right )^9}dx}{e^2}\)

\(\Big \downarrow \) 7293

\(\displaystyle \frac {\log (20) \int \left (-\frac {48 x^4}{\left (-24+e^x\right )^9}-\frac {(2 x-1) x^3}{\left (-24+e^x\right )^8}\right )dx}{e^2}\)

\(\Big \downarrow \) 7299

\(\displaystyle \frac {\log (20) \int \left (-\frac {48 x^4}{\left (-24+e^x\right )^9}-\frac {(2 x-1) x^3}{\left (-24+e^x\right )^8}\right )dx}{e^2}\)

input
Int[(-24*x^3*Log[20] + E^x*(x^3 - 2*x^4)*Log[20])/(-2641807540224*E^2 + 99 
0677827584*E^(2 + x) - 165112971264*E^(2 + 2*x) + 16052649984*E^(2 + 3*x) 
- 1003290624*E^(2 + 4*x) + 41803776*E^(2 + 5*x) - 1161216*E^(2 + 6*x) + 20 
736*E^(2 + 7*x) - 216*E^(2 + 8*x) + E^(2 + 9*x)),x]
 
output
$Aborted
 

3.23.94.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
3.23.94.4 Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.11

method result size
risch \(\frac {x^{4} \left (2 \ln \left (2\right )+\ln \left (5\right )\right ) {\mathrm e}^{-2}}{4 \left (-24+{\mathrm e}^{x}\right )^{8}}\) \(21\)
parallelrisch \(\frac {\ln \left (20\right ) x^{4} {\mathrm e}^{-2}}{4 \,{\mathrm e}^{8 x}-768 \,{\mathrm e}^{7 x}+64512 \,{\mathrm e}^{6 x}-3096576 \,{\mathrm e}^{5 x}+92897280 \,{\mathrm e}^{4 x}-1783627776 \,{\mathrm e}^{3 x}+21403533312 \,{\mathrm e}^{2 x}-146767085568 \,{\mathrm e}^{x}+440301256704}\) \(60\)

input
int(((-2*x^4+x^3)*ln(20)*exp(x)-24*x^3*ln(20))/(exp(1)^2*exp(x)^9-216*exp( 
1)^2*exp(x)^8+20736*exp(1)^2*exp(x)^7-1161216*exp(1)^2*exp(x)^6+41803776*e 
xp(1)^2*exp(x)^5-1003290624*exp(1)^2*exp(x)^4+16052649984*exp(1)^2*exp(x)^ 
3-165112971264*exp(1)^2*exp(x)^2+990677827584*exp(1)^2*exp(x)-264180754022 
4*exp(1)^2),x,method=_RETURNVERBOSE)
 
output
1/4*x^4*(2*ln(2)+ln(5))*exp(-2)/(-24+exp(x))^8
 
3.23.94.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 76 vs. \(2 (15) = 30\).

Time = 0.26 (sec) , antiderivative size = 76, normalized size of antiderivative = 4.00 \[ \int \frac {-24 x^3 \log (20)+e^x \left (x^3-2 x^4\right ) \log (20)}{-2641807540224 e^2+990677827584 e^{2+x}-165112971264 e^{2+2 x}+16052649984 e^{2+3 x}-1003290624 e^{2+4 x}+41803776 e^{2+5 x}-1161216 e^{2+6 x}+20736 e^{2+7 x}-216 e^{2+8 x}+e^{2+9 x}} \, dx=\frac {x^{4} e^{14} \log \left (20\right )}{4 \, {\left (110075314176 \, e^{16} + e^{\left (8 \, x + 16\right )} - 192 \, e^{\left (7 \, x + 16\right )} + 16128 \, e^{\left (6 \, x + 16\right )} - 774144 \, e^{\left (5 \, x + 16\right )} + 23224320 \, e^{\left (4 \, x + 16\right )} - 445906944 \, e^{\left (3 \, x + 16\right )} + 5350883328 \, e^{\left (2 \, x + 16\right )} - 36691771392 \, e^{\left (x + 16\right )}\right )}} \]

input
integrate(((-2*x^4+x^3)*log(20)*exp(x)-24*x^3*log(20))/(exp(1)^2*exp(x)^9- 
216*exp(1)^2*exp(x)^8+20736*exp(1)^2*exp(x)^7-1161216*exp(1)^2*exp(x)^6+41 
803776*exp(1)^2*exp(x)^5-1003290624*exp(1)^2*exp(x)^4+16052649984*exp(1)^2 
*exp(x)^3-165112971264*exp(1)^2*exp(x)^2+990677827584*exp(1)^2*exp(x)-2641 
807540224*exp(1)^2),x, algorithm=\
 
output
1/4*x^4*e^14*log(20)/(110075314176*e^16 + e^(8*x + 16) - 192*e^(7*x + 16) 
+ 16128*e^(6*x + 16) - 774144*e^(5*x + 16) + 23224320*e^(4*x + 16) - 44590 
6944*e^(3*x + 16) + 5350883328*e^(2*x + 16) - 36691771392*e^(x + 16))
 
3.23.94.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 90 vs. \(2 (17) = 34\).

Time = 0.16 (sec) , antiderivative size = 90, normalized size of antiderivative = 4.74 \[ \int \frac {-24 x^3 \log (20)+e^x \left (x^3-2 x^4\right ) \log (20)}{-2641807540224 e^2+990677827584 e^{2+x}-165112971264 e^{2+2 x}+16052649984 e^{2+3 x}-1003290624 e^{2+4 x}+41803776 e^{2+5 x}-1161216 e^{2+6 x}+20736 e^{2+7 x}-216 e^{2+8 x}+e^{2+9 x}} \, dx=\frac {x^{4} \log {\left (20 \right )}}{4 e^{2} e^{8 x} - 768 e^{2} e^{7 x} + 64512 e^{2} e^{6 x} - 3096576 e^{2} e^{5 x} + 92897280 e^{2} e^{4 x} - 1783627776 e^{2} e^{3 x} + 21403533312 e^{2} e^{2 x} - 146767085568 e^{2} e^{x} + 440301256704 e^{2}} \]

input
integrate(((-2*x**4+x**3)*ln(20)*exp(x)-24*x**3*ln(20))/(exp(1)**2*exp(x)* 
*9-216*exp(1)**2*exp(x)**8+20736*exp(1)**2*exp(x)**7-1161216*exp(1)**2*exp 
(x)**6+41803776*exp(1)**2*exp(x)**5-1003290624*exp(1)**2*exp(x)**4+1605264 
9984*exp(1)**2*exp(x)**3-165112971264*exp(1)**2*exp(x)**2+990677827584*exp 
(1)**2*exp(x)-2641807540224*exp(1)**2),x)
 
output
x**4*log(20)/(4*exp(2)*exp(8*x) - 768*exp(2)*exp(7*x) + 64512*exp(2)*exp(6 
*x) - 3096576*exp(2)*exp(5*x) + 92897280*exp(2)*exp(4*x) - 1783627776*exp( 
2)*exp(3*x) + 21403533312*exp(2)*exp(2*x) - 146767085568*exp(2)*exp(x) + 4 
40301256704*exp(2))
 
3.23.94.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 79 vs. \(2 (15) = 30\).

Time = 0.35 (sec) , antiderivative size = 79, normalized size of antiderivative = 4.16 \[ \int \frac {-24 x^3 \log (20)+e^x \left (x^3-2 x^4\right ) \log (20)}{-2641807540224 e^2+990677827584 e^{2+x}-165112971264 e^{2+2 x}+16052649984 e^{2+3 x}-1003290624 e^{2+4 x}+41803776 e^{2+5 x}-1161216 e^{2+6 x}+20736 e^{2+7 x}-216 e^{2+8 x}+e^{2+9 x}} \, dx=\frac {x^{4} {\left (\log \left (5\right ) + 2 \, \log \left (2\right )\right )}}{4 \, {\left (110075314176 \, e^{2} + e^{\left (8 \, x + 2\right )} - 192 \, e^{\left (7 \, x + 2\right )} + 16128 \, e^{\left (6 \, x + 2\right )} - 774144 \, e^{\left (5 \, x + 2\right )} + 23224320 \, e^{\left (4 \, x + 2\right )} - 445906944 \, e^{\left (3 \, x + 2\right )} + 5350883328 \, e^{\left (2 \, x + 2\right )} - 36691771392 \, e^{\left (x + 2\right )}\right )}} \]

input
integrate(((-2*x^4+x^3)*log(20)*exp(x)-24*x^3*log(20))/(exp(1)^2*exp(x)^9- 
216*exp(1)^2*exp(x)^8+20736*exp(1)^2*exp(x)^7-1161216*exp(1)^2*exp(x)^6+41 
803776*exp(1)^2*exp(x)^5-1003290624*exp(1)^2*exp(x)^4+16052649984*exp(1)^2 
*exp(x)^3-165112971264*exp(1)^2*exp(x)^2+990677827584*exp(1)^2*exp(x)-2641 
807540224*exp(1)^2),x, algorithm=\
 
output
1/4*x^4*(log(5) + 2*log(2))/(110075314176*e^2 + e^(8*x + 2) - 192*e^(7*x + 
 2) + 16128*e^(6*x + 2) - 774144*e^(5*x + 2) + 23224320*e^(4*x + 2) - 4459 
06944*e^(3*x + 2) + 5350883328*e^(2*x + 2) - 36691771392*e^(x + 2))
 
3.23.94.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 74 vs. \(2 (15) = 30\).

Time = 0.27 (sec) , antiderivative size = 74, normalized size of antiderivative = 3.89 \[ \int \frac {-24 x^3 \log (20)+e^x \left (x^3-2 x^4\right ) \log (20)}{-2641807540224 e^2+990677827584 e^{2+x}-165112971264 e^{2+2 x}+16052649984 e^{2+3 x}-1003290624 e^{2+4 x}+41803776 e^{2+5 x}-1161216 e^{2+6 x}+20736 e^{2+7 x}-216 e^{2+8 x}+e^{2+9 x}} \, dx=\frac {x^{4} \log \left (20\right )}{4 \, {\left (110075314176 \, e^{2} + e^{\left (8 \, x + 2\right )} - 192 \, e^{\left (7 \, x + 2\right )} + 16128 \, e^{\left (6 \, x + 2\right )} - 774144 \, e^{\left (5 \, x + 2\right )} + 23224320 \, e^{\left (4 \, x + 2\right )} - 445906944 \, e^{\left (3 \, x + 2\right )} + 5350883328 \, e^{\left (2 \, x + 2\right )} - 36691771392 \, e^{\left (x + 2\right )}\right )}} \]

input
integrate(((-2*x^4+x^3)*log(20)*exp(x)-24*x^3*log(20))/(exp(1)^2*exp(x)^9- 
216*exp(1)^2*exp(x)^8+20736*exp(1)^2*exp(x)^7-1161216*exp(1)^2*exp(x)^6+41 
803776*exp(1)^2*exp(x)^5-1003290624*exp(1)^2*exp(x)^4+16052649984*exp(1)^2 
*exp(x)^3-165112971264*exp(1)^2*exp(x)^2+990677827584*exp(1)^2*exp(x)-2641 
807540224*exp(1)^2),x, algorithm=\
 
output
1/4*x^4*log(20)/(110075314176*e^2 + e^(8*x + 2) - 192*e^(7*x + 2) + 16128* 
e^(6*x + 2) - 774144*e^(5*x + 2) + 23224320*e^(4*x + 2) - 445906944*e^(3*x 
 + 2) + 5350883328*e^(2*x + 2) - 36691771392*e^(x + 2))
 
3.23.94.9 Mupad [B] (verification not implemented)

Time = 14.01 (sec) , antiderivative size = 58, normalized size of antiderivative = 3.05 \[ \int \frac {-24 x^3 \log (20)+e^x \left (x^3-2 x^4\right ) \log (20)}{-2641807540224 e^2+990677827584 e^{2+x}-165112971264 e^{2+2 x}+16052649984 e^{2+3 x}-1003290624 e^{2+4 x}+41803776 e^{2+5 x}-1161216 e^{2+6 x}+20736 e^{2+7 x}-216 e^{2+8 x}+e^{2+9 x}} \, dx=\frac {x^4\,{\mathrm {e}}^{-2}\,\ln \left (20\right )}{4\,\left (5350883328\,{\mathrm {e}}^{2\,x}-445906944\,{\mathrm {e}}^{3\,x}+23224320\,{\mathrm {e}}^{4\,x}-774144\,{\mathrm {e}}^{5\,x}+16128\,{\mathrm {e}}^{6\,x}-192\,{\mathrm {e}}^{7\,x}+{\mathrm {e}}^{8\,x}-36691771392\,{\mathrm {e}}^x+110075314176\right )} \]

input
int((24*x^3*log(20) - exp(x)*log(20)*(x^3 - 2*x^4))/(2641807540224*exp(2) 
+ 165112971264*exp(2*x)*exp(2) - 16052649984*exp(3*x)*exp(2) + 1003290624* 
exp(4*x)*exp(2) - 41803776*exp(5*x)*exp(2) + 1161216*exp(6*x)*exp(2) - 207 
36*exp(7*x)*exp(2) + 216*exp(8*x)*exp(2) - exp(9*x)*exp(2) - 990677827584* 
exp(2)*exp(x)),x)
 
output
(x^4*exp(-2)*log(20))/(4*(5350883328*exp(2*x) - 445906944*exp(3*x) + 23224 
320*exp(4*x) - 774144*exp(5*x) + 16128*exp(6*x) - 192*exp(7*x) + exp(8*x) 
- 36691771392*exp(x) + 110075314176))