3.6.38 \(\int \frac {4 x^5+(-4 x^3-2 x^5) \log (4+4 x^2+x^4)+(-6-3 x^2) \log ^2(4+4 x^2+x^4)}{(-2 x^4-x^6) \log (4+4 x^2+x^4)+(6 x-2 x^2+3 x^3-x^4+(2 x^2+x^4) \log (5)) \log ^2(4+4 x^2+x^4)} \, dx\) [538]

3.6.38.1 Optimal result
3.6.38.2 Mathematica [A] (verified)
3.6.38.3 Rubi [F]
3.6.38.4 Maple [A] (verified)
3.6.38.5 Fricas [B] (verification not implemented)
3.6.38.6 Sympy [F(-2)]
3.6.38.7 Maxima [A] (verification not implemented)
3.6.38.8 Giac [A] (verification not implemented)
3.6.38.9 Mupad [B] (verification not implemented)

3.6.38.1 Optimal result

Integrand size = 122, antiderivative size = 35 \[ \int \frac {4 x^5+\left (-4 x^3-2 x^5\right ) \log \left (4+4 x^2+x^4\right )+\left (-6-3 x^2\right ) \log ^2\left (4+4 x^2+x^4\right )}{\left (-2 x^4-x^6\right ) \log \left (4+4 x^2+x^4\right )+\left (6 x-2 x^2+3 x^3-x^4+\left (2 x^2+x^4\right ) \log (5)\right ) \log ^2\left (4+4 x^2+x^4\right )} \, dx=\log \left (-x-\frac {-3+x-x^2}{x}+\log (5)-\frac {x^2}{\log \left (\left (2+x^2\right )^2\right )}\right ) \]

output
ln(ln(5)-(-x^2+x-3)/x-x-x^2/ln((x^2+2)^2))
 
3.6.38.2 Mathematica [A] (verified)

Time = 3.06 (sec) , antiderivative size = 54, normalized size of antiderivative = 1.54 \[ \int \frac {4 x^5+\left (-4 x^3-2 x^5\right ) \log \left (4+4 x^2+x^4\right )+\left (-6-3 x^2\right ) \log ^2\left (4+4 x^2+x^4\right )}{\left (-2 x^4-x^6\right ) \log \left (4+4 x^2+x^4\right )+\left (6 x-2 x^2+3 x^3-x^4+\left (2 x^2+x^4\right ) \log (5)\right ) \log ^2\left (4+4 x^2+x^4\right )} \, dx=-\log (x)-\log \left (\log \left (\left (2+x^2\right )^2\right )\right )+\log \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x \log \left (\left (2+x^2\right )^2\right )-x \log (5) \log \left (\left (2+x^2\right )^2\right )\right ) \]

input
Integrate[(4*x^5 + (-4*x^3 - 2*x^5)*Log[4 + 4*x^2 + x^4] + (-6 - 3*x^2)*Lo 
g[4 + 4*x^2 + x^4]^2)/((-2*x^4 - x^6)*Log[4 + 4*x^2 + x^4] + (6*x - 2*x^2 
+ 3*x^3 - x^4 + (2*x^2 + x^4)*Log[5])*Log[4 + 4*x^2 + x^4]^2),x]
 
output
-Log[x] - Log[Log[(2 + x^2)^2]] + Log[x^3 - 3*Log[(2 + x^2)^2] + x*Log[(2 
+ x^2)^2] - x*Log[5]*Log[(2 + x^2)^2]]
 
3.6.38.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {4 x^5+\left (-3 x^2-6\right ) \log ^2\left (x^4+4 x^2+4\right )+\left (-2 x^5-4 x^3\right ) \log \left (x^4+4 x^2+4\right )}{\left (-x^6-2 x^4\right ) \log \left (x^4+4 x^2+4\right )+\left (-x^4+3 x^3-2 x^2+\left (x^4+2 x^2\right ) \log (5)+6 x\right ) \log ^2\left (x^4+4 x^2+4\right )} \, dx\)

\(\Big \downarrow \) 7292

\(\displaystyle \int \frac {-4 x^5-\left (-3 x^2-6\right ) \log ^2\left (x^4+4 x^2+4\right )-\left (-2 x^5-4 x^3\right ) \log \left (x^4+4 x^2+4\right )}{x \left (x^2+2\right ) \log \left (\left (x^2+2\right )^2\right ) \left (x^3+x (1-\log (5)) \log \left (\left (x^2+2\right )^2\right )-3 \log \left (\left (x^2+2\right )^2\right )\right )}dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\frac {2 x^2}{x^3+x (1-\log (5)) \log \left (\left (x^2+2\right )^2\right )-3 \log \left (\left (x^2+2\right )^2\right )}+\frac {3 \log \left (\left (x^2+2\right )^2\right )}{x \left (x^3+x (1-\log (5)) \log \left (\left (x^2+2\right )^2\right )-3 \log \left (\left (x^2+2\right )^2\right )\right )}+\frac {4 x^4}{\left (-x^2-2\right ) \log \left (\left (x^2+2\right )^2\right ) \left (x^3+x (1-\log (5)) \log \left (\left (x^2+2\right )^2\right )-3 \log \left (\left (x^2+2\right )^2\right )\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -4 (1-\log (5)) \int \frac {1}{-x^3-(1-\log (5)) \log \left (\left (x^2+2\right )^2\right ) x+3 \log \left (\left (x^2+2\right )^2\right )}dx+\frac {9 \int \frac {1}{-x^3-(1-\log (5)) \log \left (\left (x^2+2\right )^2\right ) x+3 \log \left (\left (x^2+2\right )^2\right )}dx}{(1-\log (5))^2}-2 i \sqrt {2} (1-\log (5)) \int \frac {1}{\left (i \sqrt {2}-x\right ) \left (x^3+(1-\log (5)) \log \left (\left (x^2+2\right )^2\right ) x-3 \log \left (\left (x^2+2\right )^2\right )\right )}dx+6 \int \frac {1}{\left (i \sqrt {2}-x\right ) \left (x^3+(1-\log (5)) \log \left (\left (x^2+2\right )^2\right ) x-3 \log \left (\left (x^2+2\right )^2\right )\right )}dx-\frac {3 \int \frac {x}{x^3+(1-\log (5)) \log \left (\left (x^2+2\right )^2\right ) x-3 \log \left (\left (x^2+2\right )^2\right )}dx}{1-\log (5)}+2 \int \frac {x^2}{x^3+(1-\log (5)) \log \left (\left (x^2+2\right )^2\right ) x-3 \log \left (\left (x^2+2\right )^2\right )}dx-2 i \sqrt {2} (1-\log (5)) \int \frac {1}{\left (x+i \sqrt {2}\right ) \left (x^3+(1-\log (5)) \log \left (\left (x^2+2\right )^2\right ) x-3 \log \left (\left (x^2+2\right )^2\right )\right )}dx-6 \int \frac {1}{\left (x+i \sqrt {2}\right ) \left (x^3+(1-\log (5)) \log \left (\left (x^2+2\right )^2\right ) x-3 \log \left (\left (x^2+2\right )^2\right )\right )}dx+\frac {27 \int \frac {1}{(3-x (1-\log (5))) \left (x^3+(1-\log (5)) \log \left (\left (x^2+2\right )^2\right ) x-3 \log \left (\left (x^2+2\right )^2\right )\right )}dx}{(1-\log (5))^2}-\log \left (\log \left (\left (x^2+2\right )^2\right )\right )-\log (x)+\log (3-x (1-\log (5)))\)

input
Int[(4*x^5 + (-4*x^3 - 2*x^5)*Log[4 + 4*x^2 + x^4] + (-6 - 3*x^2)*Log[4 + 
4*x^2 + x^4]^2)/((-2*x^4 - x^6)*Log[4 + 4*x^2 + x^4] + (6*x - 2*x^2 + 3*x^ 
3 - x^4 + (2*x^2 + x^4)*Log[5])*Log[4 + 4*x^2 + x^4]^2),x]
 
output
$Aborted
 

3.6.38.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 
3.6.38.4 Maple [A] (verified)

Time = 4.45 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.71

method result size
risch \(-\ln \left (x \right )+\ln \left (\left (-\ln \left (5\right )+1\right ) x -3\right )+\ln \left (\ln \left (x^{4}+4 x^{2}+4\right )-\frac {x^{3}}{x \ln \left (5\right )-x +3}\right )-\ln \left (\ln \left (x^{4}+4 x^{2}+4\right )\right )\) \(60\)
parallelrisch \(-\ln \left (x \right )-\ln \left (\ln \left (x^{4}+4 x^{2}+4\right )\right )+\ln \left (-\ln \left (5\right ) \ln \left (x^{4}+4 x^{2}+4\right ) x +x^{3}+x \ln \left (x^{4}+4 x^{2}+4\right )-3 \ln \left (x^{4}+4 x^{2}+4\right )\right )\) \(67\)
norman \(-\ln \left (x \right )-\ln \left (\ln \left (x^{4}+4 x^{2}+4\right )\right )+\ln \left (\ln \left (5\right ) \ln \left (x^{4}+4 x^{2}+4\right ) x -x^{3}-x \ln \left (x^{4}+4 x^{2}+4\right )+3 \ln \left (x^{4}+4 x^{2}+4\right )\right )\) \(69\)

input
int(((-3*x^2-6)*ln(x^4+4*x^2+4)^2+(-2*x^5-4*x^3)*ln(x^4+4*x^2+4)+4*x^5)/(( 
(x^4+2*x^2)*ln(5)-x^4+3*x^3-2*x^2+6*x)*ln(x^4+4*x^2+4)^2+(-x^6-2*x^4)*ln(x 
^4+4*x^2+4)),x,method=_RETURNVERBOSE)
 
output
-ln(x)+ln((-ln(5)+1)*x-3)+ln(ln(x^4+4*x^2+4)-x^3/(x*ln(5)-x+3))-ln(ln(x^4+ 
4*x^2+4))
 
3.6.38.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 69 vs. \(2 (34) = 68\).

Time = 0.25 (sec) , antiderivative size = 69, normalized size of antiderivative = 1.97 \[ \int \frac {4 x^5+\left (-4 x^3-2 x^5\right ) \log \left (4+4 x^2+x^4\right )+\left (-6-3 x^2\right ) \log ^2\left (4+4 x^2+x^4\right )}{\left (-2 x^4-x^6\right ) \log \left (4+4 x^2+x^4\right )+\left (6 x-2 x^2+3 x^3-x^4+\left (2 x^2+x^4\right ) \log (5)\right ) \log ^2\left (4+4 x^2+x^4\right )} \, dx=\log \left (x \log \left (5\right ) - x + 3\right ) - \log \left (x\right ) + \log \left (-\frac {x^{3} - {\left (x \log \left (5\right ) - x + 3\right )} \log \left (x^{4} + 4 \, x^{2} + 4\right )}{x \log \left (5\right ) - x + 3}\right ) - \log \left (\log \left (x^{4} + 4 \, x^{2} + 4\right )\right ) \]

input
integrate(((-3*x^2-6)*log(x^4+4*x^2+4)^2+(-2*x^5-4*x^3)*log(x^4+4*x^2+4)+4 
*x^5)/(((x^4+2*x^2)*log(5)-x^4+3*x^3-2*x^2+6*x)*log(x^4+4*x^2+4)^2+(-x^6-2 
*x^4)*log(x^4+4*x^2+4)),x, algorithm=\
 
output
log(x*log(5) - x + 3) - log(x) + log(-(x^3 - (x*log(5) - x + 3)*log(x^4 + 
4*x^2 + 4))/(x*log(5) - x + 3)) - log(log(x^4 + 4*x^2 + 4))
 
3.6.38.6 Sympy [F(-2)]

Exception generated. \[ \int \frac {4 x^5+\left (-4 x^3-2 x^5\right ) \log \left (4+4 x^2+x^4\right )+\left (-6-3 x^2\right ) \log ^2\left (4+4 x^2+x^4\right )}{\left (-2 x^4-x^6\right ) \log \left (4+4 x^2+x^4\right )+\left (6 x-2 x^2+3 x^3-x^4+\left (2 x^2+x^4\right ) \log (5)\right ) \log ^2\left (4+4 x^2+x^4\right )} \, dx=\text {Exception raised: PolynomialError} \]

input
integrate(((-3*x**2-6)*ln(x**4+4*x**2+4)**2+(-2*x**5-4*x**3)*ln(x**4+4*x** 
2+4)+4*x**5)/(((x**4+2*x**2)*ln(5)-x**4+3*x**3-2*x**2+6*x)*ln(x**4+4*x**2+ 
4)**2+(-x**6-2*x**4)*ln(x**4+4*x**2+4)),x)
 
output
Exception raised: PolynomialError >> 1/(-2*x**4*log(5) + x**4 + x**4*log(5 
)**2 - 6*x**3 + 6*x**3*log(5) - 4*x**2*log(5) + 2*x**2*log(5)**2 + 11*x**2 
 - 12*x + 12*x*log(5) + 18) contains an element of the set of generators.
 
3.6.38.7 Maxima [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.60 \[ \int \frac {4 x^5+\left (-4 x^3-2 x^5\right ) \log \left (4+4 x^2+x^4\right )+\left (-6-3 x^2\right ) \log ^2\left (4+4 x^2+x^4\right )}{\left (-2 x^4-x^6\right ) \log \left (4+4 x^2+x^4\right )+\left (6 x-2 x^2+3 x^3-x^4+\left (2 x^2+x^4\right ) \log (5)\right ) \log ^2\left (4+4 x^2+x^4\right )} \, dx=\log \left (x {\left (\log \left (5\right ) - 1\right )} + 3\right ) - \log \left (x\right ) + \log \left (-\frac {x^{3} - 2 \, {\left (x {\left (\log \left (5\right ) - 1\right )} + 3\right )} \log \left (x^{2} + 2\right )}{2 \, {\left (x {\left (\log \left (5\right ) - 1\right )} + 3\right )}}\right ) - \log \left (\log \left (x^{2} + 2\right )\right ) \]

input
integrate(((-3*x^2-6)*log(x^4+4*x^2+4)^2+(-2*x^5-4*x^3)*log(x^4+4*x^2+4)+4 
*x^5)/(((x^4+2*x^2)*log(5)-x^4+3*x^3-2*x^2+6*x)*log(x^4+4*x^2+4)^2+(-x^6-2 
*x^4)*log(x^4+4*x^2+4)),x, algorithm=\
 
output
log(x*(log(5) - 1) + 3) - log(x) + log(-1/2*(x^3 - 2*(x*(log(5) - 1) + 3)* 
log(x^2 + 2))/(x*(log(5) - 1) + 3)) - log(log(x^2 + 2))
 
3.6.38.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.94 \[ \int \frac {4 x^5+\left (-4 x^3-2 x^5\right ) \log \left (4+4 x^2+x^4\right )+\left (-6-3 x^2\right ) \log ^2\left (4+4 x^2+x^4\right )}{\left (-2 x^4-x^6\right ) \log \left (4+4 x^2+x^4\right )+\left (6 x-2 x^2+3 x^3-x^4+\left (2 x^2+x^4\right ) \log (5)\right ) \log ^2\left (4+4 x^2+x^4\right )} \, dx=\log \left (-x^{3} + x \log \left (5\right ) \log \left (x^{4} + 4 \, x^{2} + 4\right ) - x \log \left (x^{4} + 4 \, x^{2} + 4\right ) + 3 \, \log \left (x^{4} + 4 \, x^{2} + 4\right )\right ) - \log \left (x\right ) - \log \left (\log \left (x^{4} + 4 \, x^{2} + 4\right )\right ) \]

input
integrate(((-3*x^2-6)*log(x^4+4*x^2+4)^2+(-2*x^5-4*x^3)*log(x^4+4*x^2+4)+4 
*x^5)/(((x^4+2*x^2)*log(5)-x^4+3*x^3-2*x^2+6*x)*log(x^4+4*x^2+4)^2+(-x^6-2 
*x^4)*log(x^4+4*x^2+4)),x, algorithm=\
 
output
log(-x^3 + x*log(5)*log(x^4 + 4*x^2 + 4) - x*log(x^4 + 4*x^2 + 4) + 3*log( 
x^4 + 4*x^2 + 4)) - log(x) - log(log(x^4 + 4*x^2 + 4))
 
3.6.38.9 Mupad [B] (verification not implemented)

Time = 12.98 (sec) , antiderivative size = 27623, normalized size of antiderivative = 789.23 \[ \int \frac {4 x^5+\left (-4 x^3-2 x^5\right ) \log \left (4+4 x^2+x^4\right )+\left (-6-3 x^2\right ) \log ^2\left (4+4 x^2+x^4\right )}{\left (-2 x^4-x^6\right ) \log \left (4+4 x^2+x^4\right )+\left (6 x-2 x^2+3 x^3-x^4+\left (2 x^2+x^4\right ) \log (5)\right ) \log ^2\left (4+4 x^2+x^4\right )} \, dx=\text {Too large to display} \]

input
int((log(4*x^2 + x^4 + 4)*(4*x^3 + 2*x^5) + log(4*x^2 + x^4 + 4)^2*(3*x^2 
+ 6) - 4*x^5)/(log(4*x^2 + x^4 + 4)*(2*x^4 + x^6) - log(4*x^2 + x^4 + 4)^2 
*(6*x + log(5)*(2*x^2 + x^4) - 2*x^2 + 3*x^3 - x^4)),x)
 
output
log(x*(9*log((x^2 + 2)^2) + x^2*log((x^2 + 2)^2) - x^4*log(5) - 3*x^3 + x^ 
4 - 6*x*log((x^2 + 2)^2) + x^2*log((x^2 + 2)^2)*log(5)^2 + 6*x*log((x^2 + 
2)^2)*log(5) - 2*x^2*log((x^2 + 2)^2)*log(5))) - log(x*(72*log(4*x^2 + x^4 
 + 4) + 12*x^2*log(4*x^2 + x^4 + 4) - 9*x^3*log(4*x^2 + x^4 + 4) + 2*x^4*l 
og(4*x^2 + x^4 + 4) - 4*x^4*log(5) - 66*x*log(4*x^2 + x^4 + 4) - 12*x^3 + 
4*x^4 + 48*x*log(5)*log(4*x^2 + x^4 + 4) - 20*x^2*log(5)*log(4*x^2 + x^4 + 
 4) - 2*x^4*log(5)*log(4*x^2 + x^4 + 4) + 8*x^2*log(5)^2*log(4*x^2 + x^4 + 
 4)) - x*(9*x^3*log(4*x^2 + x^4 + 4) - 4*x^2*log(4*x^2 + x^4 + 4) - 2*x^4* 
log(4*x^2 + x^4 + 4) - 4*x^4*log(5) + 18*x*log(4*x^2 + x^4 + 4) - 12*x^3 + 
 4*x^4 + 4*x^2*log(5)*log(4*x^2 + x^4 + 4) + 2*x^4*log(5)*log(4*x^2 + x^4 
+ 4))) - log(x) + symsum(log(33043620105792*log(625) - 191446983005184*log 
(5) - root(12476089554*z^5*log(5)*log(625) - 4950250980*z^5*log(5)^2*log(6 
25)^2 + 484358724*z^5*log(5)^4*log(625)^3 - 239636880*z^5*log(5)^2*log(625 
)^4 - 94885776*z^5*log(5)^5*log(625)^3 + 88216560*z^5*log(5)^7*log(625)^2 
- 54064008*z^5*log(5)^6*log(625)^2 - 25406208*z^5*log(5)^8*log(625)^2 + 19 
994256*z^5*log(5)^6*log(625)^3 + 19789920*z^5*log(5)^3*log(625)^4 + 800000 
0*z^5*log(5)^9*log(625)^2 - 4233600*z^5*log(5)^7*log(625)^3 - 3421440*z^5* 
log(5)^4*log(625)^4 + 559872*z^5*log(5)^5*log(625)^4 - 450048*z^5*log(5)^1 
0*log(625)^2 + 179712*z^5*log(5)^8*log(625)^3 - 33024*z^5*log(5)^11*log(62 
5)^2 + 2048*z^5*log(5)^12*log(625)^2 + 1215973440*z^5*log(5)^6*log(625)...