3.7.80 \(\int \frac {\sqrt {2} (1-e^{2 x}-2 x) (\frac {1}{\log (e^{-2 x} (2 x-2 e^{2 x} x))})^{5/4}}{-4 x+4 e^{2 x} x} \, dx\) [680]

3.7.80.1 Optimal result
3.7.80.2 Mathematica [A] (verified)
3.7.80.3 Rubi [F]
3.7.80.4 Maple [F]
3.7.80.5 Fricas [A] (verification not implemented)
3.7.80.6 Sympy [F(-1)]
3.7.80.7 Maxima [C] (verification not implemented)
3.7.80.8 Giac [A] (verification not implemented)
3.7.80.9 Mupad [B] (verification not implemented)

3.7.80.1 Optimal result

Integrand size = 57, antiderivative size = 26 \[ \int \frac {\sqrt {2} \left (1-e^{2 x}-2 x\right ) \left (\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right )^{5/4}}{-4 x+4 e^{2 x} x} \, dx=\sqrt {2} \sqrt [4]{\frac {1}{\log \left (2 \left (-x+e^{-2 x} x\right )\right )}} \]

output
2^(1/2)*(1/ln(2*x/exp(x)^2-2*x))^(1/4)
 
3.7.80.2 Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.88 \[ \int \frac {\sqrt {2} \left (1-e^{2 x}-2 x\right ) \left (\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right )^{5/4}}{-4 x+4 e^{2 x} x} \, dx=\sqrt {2} \sqrt [4]{\frac {1}{\log \left (2 \left (-1+e^{-2 x}\right ) x\right )}} \]

input
Integrate[(Sqrt[2]*(1 - E^(2*x) - 2*x)*(Log[(2*x - 2*E^(2*x)*x)/E^(2*x)]^( 
-1))^(5/4))/(-4*x + 4*E^(2*x)*x),x]
 
output
Sqrt[2]*(Log[2*(-1 + E^(-2*x))*x]^(-1))^(1/4)
 
3.7.80.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {2} \left (-2 x-e^{2 x}+1\right ) \left (\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right )^{5/4}}{4 e^{2 x} x-4 x} \, dx\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {2} \int -\frac {\left (-2 x-e^{2 x}+1\right ) \left (\frac {1}{\log \left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}\right )^{5/4}}{4 \left (x-e^{2 x} x\right )}dx\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\left (-2 x-e^{2 x}+1\right ) \left (\frac {1}{\log \left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}\right )^{5/4}}{x-e^{2 x} x}dx}{2 \sqrt {2}}\)

\(\Big \downarrow \) 7271

\(\displaystyle -\frac {\sqrt [4]{\frac {1}{\log \left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}} \sqrt [4]{\log \left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )} \int \frac {-2 x-e^{2 x}+1}{\left (x-e^{2 x} x\right ) \log ^{\frac {5}{4}}\left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}dx}{2 \sqrt {2}}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {\sqrt [4]{\frac {1}{\log \left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}} \sqrt [4]{\log \left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )} \int \left (-\frac {1}{\left (1+e^x\right ) \log ^{\frac {5}{4}}\left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}+\frac {1}{x \log ^{\frac {5}{4}}\left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}+\frac {1}{\log ^{\frac {5}{4}}\left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right ) \left (-1+e^x\right )}\right )dx}{2 \sqrt {2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sqrt [4]{\frac {1}{\log \left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}} \sqrt [4]{\log \left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )} \left (\int \frac {1}{\left (-1+e^x\right ) \log ^{\frac {5}{4}}\left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}dx-\int \frac {1}{\left (1+e^x\right ) \log ^{\frac {5}{4}}\left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}dx+\int \frac {1}{x \log ^{\frac {5}{4}}\left (2 e^{-2 x} \left (x-e^{2 x} x\right )\right )}dx\right )}{2 \sqrt {2}}\)

input
Int[(Sqrt[2]*(1 - E^(2*x) - 2*x)*(Log[(2*x - 2*E^(2*x)*x)/E^(2*x)]^(-1))^( 
5/4))/(-4*x + 4*E^(2*x)*x),x]
 
output
$Aborted
 

3.7.80.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7271
Int[(u_.)*((a_.)*(v_)^(m_.))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a*v^m)^ 
FracPart[p]/v^(m*FracPart[p]))   Int[u*v^(m*p), x], x] /; FreeQ[{a, m, p}, 
x] &&  !IntegerQ[p] &&  !FreeQ[v, x] &&  !(EqQ[a, 1] && EqQ[m, 1]) &&  !(Eq 
Q[v, x] && EqQ[m, 1])
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.7.80.4 Maple [F]

\[\int \frac {\left (-{\mathrm e}^{2 x}+1-2 x \right ) \sqrt {2}\, {\left (\frac {1}{\ln \left (\left (-2 x \,{\mathrm e}^{2 x}+2 x \right ) {\mathrm e}^{-2 x}\right )}\right )}^{\frac {1}{4}}}{\left (4 x \,{\mathrm e}^{2 x}-4 x \right ) \ln \left (\left (-2 x \,{\mathrm e}^{2 x}+2 x \right ) {\mathrm e}^{-2 x}\right )}d x\]

input
int((-exp(x)^2+1-2*x)*2^(1/2)*(1/ln((-2*x*exp(x)^2+2*x)/exp(x)^2))^(1/4)/( 
4*x*exp(x)^2-4*x)/ln((-2*x*exp(x)^2+2*x)/exp(x)^2),x)
 
output
int((-exp(x)^2+1-2*x)*2^(1/2)*(1/ln((-2*x*exp(x)^2+2*x)/exp(x)^2))^(1/4)/( 
4*x*exp(x)^2-4*x)/ln((-2*x*exp(x)^2+2*x)/exp(x)^2),x)
 
3.7.80.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.88 \[ \int \frac {\sqrt {2} \left (1-e^{2 x}-2 x\right ) \left (\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right )^{5/4}}{-4 x+4 e^{2 x} x} \, dx=\frac {\sqrt {2}}{\log \left (-2 \, {\left (x e^{\left (2 \, x\right )} - x\right )} e^{\left (-2 \, x\right )}\right )^{\frac {1}{4}}} \]

input
integrate((-exp(x)^2+1-2*x)*2^(1/2)*(1/log((-2*x*exp(x)^2+2*x)/exp(x)^2))^ 
(1/4)/(4*x*exp(x)^2-4*x)/log((-2*x*exp(x)^2+2*x)/exp(x)^2),x, algorithm=\
 
output
sqrt(2)/log(-2*(x*e^(2*x) - x)*e^(-2*x))^(1/4)
 
3.7.80.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {2} \left (1-e^{2 x}-2 x\right ) \left (\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right )^{5/4}}{-4 x+4 e^{2 x} x} \, dx=\text {Timed out} \]

input
integrate((-exp(x)**2+1-2*x)*2**(1/2)*(1/ln((-2*x*exp(x)**2+2*x)/exp(x)**2 
))**(1/4)/(4*x*exp(x)**2-4*x)/ln((-2*x*exp(x)**2+2*x)/exp(x)**2),x)
 
output
Timed out
 
3.7.80.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.36 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.04 \[ \int \frac {\sqrt {2} \left (1-e^{2 x}-2 x\right ) \left (\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right )^{5/4}}{-4 x+4 e^{2 x} x} \, dx=\frac {\sqrt {2}}{{\left (i \, \pi - 2 \, x + \log \left (2\right ) + \log \left (x\right ) + \log \left (e^{x} + 1\right ) + \log \left (e^{x} - 1\right )\right )}^{\frac {1}{4}}} \]

input
integrate((-exp(x)^2+1-2*x)*2^(1/2)*(1/log((-2*x*exp(x)^2+2*x)/exp(x)^2))^ 
(1/4)/(4*x*exp(x)^2-4*x)/log((-2*x*exp(x)^2+2*x)/exp(x)^2),x, algorithm=\
 
output
sqrt(2)/(I*pi - 2*x + log(2) + log(x) + log(e^x + 1) + log(e^x - 1))^(1/4)
 
3.7.80.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.88 \[ \int \frac {\sqrt {2} \left (1-e^{2 x}-2 x\right ) \left (\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right )^{5/4}}{-4 x+4 e^{2 x} x} \, dx=\frac {\sqrt {2}}{\log \left (-2 \, {\left (x e^{\left (2 \, x\right )} - x\right )} e^{\left (-2 \, x\right )}\right )^{\frac {1}{4}}} \]

input
integrate((-exp(x)^2+1-2*x)*2^(1/2)*(1/log((-2*x*exp(x)^2+2*x)/exp(x)^2))^ 
(1/4)/(4*x*exp(x)^2-4*x)/log((-2*x*exp(x)^2+2*x)/exp(x)^2),x, algorithm=\
 
output
sqrt(2)/log(-2*(x*e^(2*x) - x)*e^(-2*x))^(1/4)
 
3.7.80.9 Mupad [B] (verification not implemented)

Time = 9.40 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.77 \[ \int \frac {\sqrt {2} \left (1-e^{2 x}-2 x\right ) \left (\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right )^{5/4}}{-4 x+4 e^{2 x} x} \, dx=\sqrt {2}\,{\left (\frac {1}{\ln \left (2\,x\,{\mathrm {e}}^{-2\,x}-2\,x\right )}\right )}^{1/4} \]

input
int((2^(1/2)*(1/log(exp(-2*x)*(2*x - 2*x*exp(2*x))))^(1/4)*(2*x + exp(2*x) 
 - 1))/(log(exp(-2*x)*(2*x - 2*x*exp(2*x)))*(4*x - 4*x*exp(2*x))),x)
 
output
2^(1/2)*(1/log(2*x*exp(-2*x) - 2*x))^(1/4)