3.10.48 \(\int \frac {-4-4 x+2 x^2+5 x^3+2 x^4+(7 x^2+6 x^3) \log (\frac {3 e^{x+x^2}}{4})+(-2+3 x+6 x^2) \log ^2(\frac {3 e^{x+x^2}}{4})+(1+2 x) \log ^3(\frac {3 e^{x+x^2}}{4})}{x^3+3 x^2 \log (\frac {3 e^{x+x^2}}{4})+3 x \log ^2(\frac {3 e^{x+x^2}}{4})+\log ^3(\frac {3 e^{x+x^2}}{4})} \, dx\) [948]

3.10.48.1 Optimal result
3.10.48.2 Mathematica [A] (verified)
3.10.48.3 Rubi [F]
3.10.48.4 Maple [B] (verified)
3.10.48.5 Fricas [B] (verification not implemented)
3.10.48.6 Sympy [B] (verification not implemented)
3.10.48.7 Maxima [B] (verification not implemented)
3.10.48.8 Giac [A] (verification not implemented)
3.10.48.9 Mupad [B] (verification not implemented)

3.10.48.1 Optimal result

Integrand size = 144, antiderivative size = 25 \[ \int \frac {-4-4 x+2 x^2+5 x^3+2 x^4+\left (7 x^2+6 x^3\right ) \log \left (\frac {3 e^{x+x^2}}{4}\right )+\left (-2+3 x+6 x^2\right ) \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+(1+2 x) \log ^3\left (\frac {3 e^{x+x^2}}{4}\right )}{x^3+3 x^2 \log \left (\frac {3 e^{x+x^2}}{4}\right )+3 x \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+\log ^3\left (\frac {3 e^{x+x^2}}{4}\right )} \, dx=1+x+\left (-x+\frac {1}{x+\log \left (\frac {3 e^{x+x^2}}{4}\right )}\right )^2 \]

output
(1/(ln(3/4*exp(x)*exp(x^2))+x)-x)^2+x+1
 
3.10.48.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.60 \[ \int \frac {-4-4 x+2 x^2+5 x^3+2 x^4+\left (7 x^2+6 x^3\right ) \log \left (\frac {3 e^{x+x^2}}{4}\right )+\left (-2+3 x+6 x^2\right ) \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+(1+2 x) \log ^3\left (\frac {3 e^{x+x^2}}{4}\right )}{x^3+3 x^2 \log \left (\frac {3 e^{x+x^2}}{4}\right )+3 x \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+\log ^3\left (\frac {3 e^{x+x^2}}{4}\right )} \, dx=x+x^2+\frac {1}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^2}-\frac {2 x}{x+\log \left (\frac {3 e^{x+x^2}}{4}\right )} \]

input
Integrate[(-4 - 4*x + 2*x^2 + 5*x^3 + 2*x^4 + (7*x^2 + 6*x^3)*Log[(3*E^(x 
+ x^2))/4] + (-2 + 3*x + 6*x^2)*Log[(3*E^(x + x^2))/4]^2 + (1 + 2*x)*Log[( 
3*E^(x + x^2))/4]^3)/(x^3 + 3*x^2*Log[(3*E^(x + x^2))/4] + 3*x*Log[(3*E^(x 
 + x^2))/4]^2 + Log[(3*E^(x + x^2))/4]^3),x]
 
output
x + x^2 + (x + Log[(3*E^(x + x^2))/4])^(-2) - (2*x)/(x + Log[(3*E^(x + x^2 
))/4])
 
3.10.48.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {2 x^4+5 x^3+2 x^2+(2 x+1) \log ^3\left (\frac {3 e^{x^2+x}}{4}\right )+\left (6 x^2+3 x-2\right ) \log ^2\left (\frac {3 e^{x^2+x}}{4}\right )+\left (6 x^3+7 x^2\right ) \log \left (\frac {3 e^{x^2+x}}{4}\right )-4 x-4}{x^3+\log ^3\left (\frac {3 e^{x^2+x}}{4}\right )+3 x \log ^2\left (\frac {3 e^{x^2+x}}{4}\right )+3 x^2 \log \left (\frac {3 e^{x^2+x}}{4}\right )} \, dx\)

\(\Big \downarrow \) 7292

\(\displaystyle \int \frac {2 x^4+5 x^3+2 x^2+(2 x+1) \log ^3\left (\frac {3 e^{x^2+x}}{4}\right )+\left (6 x^2+3 x-2\right ) \log ^2\left (\frac {3 e^{x^2+x}}{4}\right )+\left (6 x^3+7 x^2\right ) \log \left (\frac {3 e^{x^2+x}}{4}\right )-4 x-4}{\left (\log \left (\frac {3 e^{x^2+x}}{4}\right )+x\right )^3}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {4 (x+1) x}{\left (\log \left (\frac {3 e^{x^2+x}}{4}\right )+x\right )^2}-\frac {2}{\log \left (\frac {3 e^{x^2+x}}{4}\right )+x}-\frac {4 (x+1)}{\left (\log \left (\frac {3 e^{x^2+x}}{4}\right )+x\right )^3}+2 x+1\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 4 \int \frac {x}{\left (x+\log \left (\frac {3 e^{x^2+x}}{4}\right )\right )^2}dx+4 \int \frac {x^2}{\left (x+\log \left (\frac {3 e^{x^2+x}}{4}\right )\right )^2}dx-2 \int \frac {1}{x+\log \left (\frac {3 e^{x^2+x}}{4}\right )}dx+x^2+\frac {1}{\left (\log \left (\frac {3 e^{x^2+x}}{4}\right )+x\right )^2}+x\)

input
Int[(-4 - 4*x + 2*x^2 + 5*x^3 + 2*x^4 + (7*x^2 + 6*x^3)*Log[(3*E^(x + x^2) 
)/4] + (-2 + 3*x + 6*x^2)*Log[(3*E^(x + x^2))/4]^2 + (1 + 2*x)*Log[(3*E^(x 
 + x^2))/4]^3)/(x^3 + 3*x^2*Log[(3*E^(x + x^2))/4] + 3*x*Log[(3*E^(x + x^2 
))/4]^2 + Log[(3*E^(x + x^2))/4]^3),x]
 
output
$Aborted
 

3.10.48.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.10.48.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(53\) vs. \(2(22)=44\).

Time = 4.83 (sec) , antiderivative size = 54, normalized size of antiderivative = 2.16

method result size
default \(x^{2}+x +\frac {-2 x^{3}-4 x^{2}-2 x \left (\ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )-x^{2}-x \right )+1}{{\left (\ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )+x \right )}^{2}}\) \(54\)
parallelrisch \(\frac {1-x^{4}-2 \ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right ) x^{3}-\ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )^{2} x^{2}-x^{3}+3 x \ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )^{2}+2 \ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )^{3}+2 x \ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )+2 \ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )^{2}}{x^{2}+2 x \ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )+\ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )^{2}}\) \(125\)
risch \(x^{2}+x -\frac {4 i \left (-i+\pi x \operatorname {csgn}\left (i {\mathrm e}^{\left (1+x \right ) x}\right )^{3}-\pi x \operatorname {csgn}\left (i {\mathrm e}^{\left (1+x \right ) x}\right )^{2} \operatorname {csgn}\left (i {\mathrm e}^{x^{2}}\right )-\pi x \operatorname {csgn}\left (i {\mathrm e}^{\left (1+x \right ) x}\right )^{2} \operatorname {csgn}\left (i {\mathrm e}^{x}\right )+\pi x \,\operatorname {csgn}\left (i {\mathrm e}^{\left (1+x \right ) x}\right ) \operatorname {csgn}\left (i {\mathrm e}^{x^{2}}\right ) \operatorname {csgn}\left (i {\mathrm e}^{x}\right )-4 i x \ln \left (2\right )+2 i \ln \left (3\right ) x +2 i x^{2}+2 i x \ln \left ({\mathrm e}^{x}\right )+2 i x \ln \left ({\mathrm e}^{x^{2}}\right )\right )}{{\left (\pi \operatorname {csgn}\left (i {\mathrm e}^{\left (1+x \right ) x}\right )^{3}-\pi \operatorname {csgn}\left (i {\mathrm e}^{\left (1+x \right ) x}\right )^{2} \operatorname {csgn}\left (i {\mathrm e}^{x^{2}}\right )-\pi \operatorname {csgn}\left (i {\mathrm e}^{\left (1+x \right ) x}\right )^{2} \operatorname {csgn}\left (i {\mathrm e}^{x}\right )+\pi \,\operatorname {csgn}\left (i {\mathrm e}^{\left (1+x \right ) x}\right ) \operatorname {csgn}\left (i {\mathrm e}^{x^{2}}\right ) \operatorname {csgn}\left (i {\mathrm e}^{x}\right )-4 i \ln \left (2\right )+2 i \ln \left (3\right )+2 i x +2 i \ln \left ({\mathrm e}^{x}\right )+2 i \ln \left ({\mathrm e}^{x^{2}}\right )\right )}^{2}}\) \(249\)

input
int(((1+2*x)*ln(3/4*exp(x)*exp(x^2))^3+(6*x^2+3*x-2)*ln(3/4*exp(x)*exp(x^2 
))^2+(6*x^3+7*x^2)*ln(3/4*exp(x)*exp(x^2))+2*x^4+5*x^3+2*x^2-4*x-4)/(ln(3/ 
4*exp(x)*exp(x^2))^3+3*x*ln(3/4*exp(x)*exp(x^2))^2+3*x^2*ln(3/4*exp(x)*exp 
(x^2))+x^3),x,method=_RETURNVERBOSE)
 
output
x^2+x+2*(-x^3-2*x^2-x*(ln(3/4*exp(x)*exp(x^2))-x^2-x)+1/2)/(ln(3/4*exp(x)* 
exp(x^2))+x)^2
 
3.10.48.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 88 vs. \(2 (22) = 44\).

Time = 0.25 (sec) , antiderivative size = 88, normalized size of antiderivative = 3.52 \[ \int \frac {-4-4 x+2 x^2+5 x^3+2 x^4+\left (7 x^2+6 x^3\right ) \log \left (\frac {3 e^{x+x^2}}{4}\right )+\left (-2+3 x+6 x^2\right ) \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+(1+2 x) \log ^3\left (\frac {3 e^{x+x^2}}{4}\right )}{x^3+3 x^2 \log \left (\frac {3 e^{x+x^2}}{4}\right )+3 x \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+\log ^3\left (\frac {3 e^{x+x^2}}{4}\right )} \, dx=\frac {x^{6} + 5 \, x^{5} + 8 \, x^{4} + 2 \, x^{3} + {\left (x^{2} + x\right )} \log \left (\frac {3}{4}\right )^{2} - 4 \, x^{2} + 2 \, {\left (x^{4} + 3 \, x^{3} + 2 \, x^{2} - x\right )} \log \left (\frac {3}{4}\right ) + 1}{x^{4} + 4 \, x^{3} + 4 \, x^{2} + 2 \, {\left (x^{2} + 2 \, x\right )} \log \left (\frac {3}{4}\right ) + \log \left (\frac {3}{4}\right )^{2}} \]

input
integrate(((1+2*x)*log(3/4*exp(x)*exp(x^2))^3+(6*x^2+3*x-2)*log(3/4*exp(x) 
*exp(x^2))^2+(6*x^3+7*x^2)*log(3/4*exp(x)*exp(x^2))+2*x^4+5*x^3+2*x^2-4*x- 
4)/(log(3/4*exp(x)*exp(x^2))^3+3*x*log(3/4*exp(x)*exp(x^2))^2+3*x^2*log(3/ 
4*exp(x)*exp(x^2))+x^3),x, algorithm=\
 
output
(x^6 + 5*x^5 + 8*x^4 + 2*x^3 + (x^2 + x)*log(3/4)^2 - 4*x^2 + 2*(x^4 + 3*x 
^3 + 2*x^2 - x)*log(3/4) + 1)/(x^4 + 4*x^3 + 4*x^2 + 2*(x^2 + 2*x)*log(3/4 
) + log(3/4)^2)
 
3.10.48.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 83 vs. \(2 (22) = 44\).

Time = 2.01 (sec) , antiderivative size = 83, normalized size of antiderivative = 3.32 \[ \int \frac {-4-4 x+2 x^2+5 x^3+2 x^4+\left (7 x^2+6 x^3\right ) \log \left (\frac {3 e^{x+x^2}}{4}\right )+\left (-2+3 x+6 x^2\right ) \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+(1+2 x) \log ^3\left (\frac {3 e^{x+x^2}}{4}\right )}{x^3+3 x^2 \log \left (\frac {3 e^{x+x^2}}{4}\right )+3 x \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+\log ^3\left (\frac {3 e^{x+x^2}}{4}\right )} \, dx=x^{2} + x + \frac {- 2 x^{3} - 4 x^{2} + x \left (- 2 \log {\left (3 \right )} + 4 \log {\left (2 \right )}\right ) + 1}{x^{4} + 4 x^{3} + x^{2} \left (- 4 \log {\left (2 \right )} + 2 \log {\left (3 \right )} + 4\right ) + x \left (- 8 \log {\left (2 \right )} + 4 \log {\left (3 \right )}\right ) - 4 \log {\left (2 \right )} \log {\left (3 \right )} + \log {\left (3 \right )}^{2} + 4 \log {\left (2 \right )}^{2}} \]

input
integrate(((1+2*x)*ln(3/4*exp(x)*exp(x**2))**3+(6*x**2+3*x-2)*ln(3/4*exp(x 
)*exp(x**2))**2+(6*x**3+7*x**2)*ln(3/4*exp(x)*exp(x**2))+2*x**4+5*x**3+2*x 
**2-4*x-4)/(ln(3/4*exp(x)*exp(x**2))**3+3*x*ln(3/4*exp(x)*exp(x**2))**2+3* 
x**2*ln(3/4*exp(x)*exp(x**2))+x**3),x)
 
output
x**2 + x + (-2*x**3 - 4*x**2 + x*(-2*log(3) + 4*log(2)) + 1)/(x**4 + 4*x** 
3 + x**2*(-4*log(2) + 2*log(3) + 4) + x*(-8*log(2) + 4*log(3)) - 4*log(2)* 
log(3) + log(3)**2 + 4*log(2)**2)
 
3.10.48.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 10769 vs. \(2 (22) = 44\).

Time = 2.63 (sec) , antiderivative size = 10769, normalized size of antiderivative = 430.76 \[ \int \frac {-4-4 x+2 x^2+5 x^3+2 x^4+\left (7 x^2+6 x^3\right ) \log \left (\frac {3 e^{x+x^2}}{4}\right )+\left (-2+3 x+6 x^2\right ) \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+(1+2 x) \log ^3\left (\frac {3 e^{x+x^2}}{4}\right )}{x^3+3 x^2 \log \left (\frac {3 e^{x+x^2}}{4}\right )+3 x \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+\log ^3\left (\frac {3 e^{x+x^2}}{4}\right )} \, dx=\text {Too large to display} \]

input
integrate(((1+2*x)*log(3/4*exp(x)*exp(x^2))^3+(6*x^2+3*x-2)*log(3/4*exp(x) 
*exp(x^2))^2+(6*x^3+7*x^2)*log(3/4*exp(x)*exp(x^2))+2*x^4+5*x^3+2*x^2-4*x- 
4)/(log(3/4*exp(x)*exp(x^2))^3+3*x*log(3/4*exp(x)*exp(x^2))^2+3*x^2*log(3/ 
4*exp(x)*exp(x^2))+x^3),x, algorithm=\
 
output
-1/8*(2*(3*x^3 + 9*x^2 + x*(5*log(3) - 10*log(2) + 4) + 2*log(3)^2 - 2*(4* 
log(3) + 1)*log(2) + 8*log(2)^2 + log(3))/((log(3)^2 - 4*(log(3) - 1)*log( 
2) + 4*log(2)^2 - 2*log(3) + 1)*x^4 + 4*(log(3)^2 - 4*(log(3) - 1)*log(2) 
+ 4*log(2)^2 - 2*log(3) + 1)*x^3 + log(3)^4 - 16*(2*log(3) - 1)*log(2)^3 + 
 16*log(2)^4 + 2*(log(3)^3 + 12*log(3)*log(2)^2 - 8*log(2)^3 - 6*(log(3)^2 
 - 1)*log(2) - 3*log(3) + 2)*x^2 - 2*log(3)^3 + 4*(6*log(3)^2 - 6*log(3) + 
 1)*log(2)^2 + 4*(log(3)^3 + 4*(3*log(3) - 2)*log(2)^2 - 8*log(2)^3 - 2*lo 
g(3)^2 - 2*(3*log(3)^2 - 4*log(3) + 1)*log(2) + log(3))*x + log(3)^2 - 4*( 
2*log(3)^3 - 3*log(3)^2 + log(3))*log(2)) + 3*log((x - sqrt(-log(3) + 2*lo 
g(2) + 1) + 1)/(x + sqrt(-log(3) + 2*log(2) + 1) + 1))/((log(3)^2 - 4*(log 
(3) - 1)*log(2) + 4*log(2)^2 - 2*log(3) + 1)*sqrt(-log(3) + 2*log(2) + 1)) 
)*log(3/4*e^(x^2 + x))^3 + 1/16*(2*(3*x^3 + 9*x^2 + x*(5*log(3) - 10*log(2 
) + 4) + 5*log(3) - 10*log(2) - 2)/((log(3)^2 - 4*(log(3) - 1)*log(2) + 4* 
log(2)^2 - 2*log(3) + 1)*x^4 + 4*(log(3)^2 - 4*(log(3) - 1)*log(2) + 4*log 
(2)^2 - 2*log(3) + 1)*x^3 + log(3)^4 - 16*(2*log(3) - 1)*log(2)^3 + 16*log 
(2)^4 + 2*(log(3)^3 + 12*log(3)*log(2)^2 - 8*log(2)^3 - 6*(log(3)^2 - 1)*l 
og(2) - 3*log(3) + 2)*x^2 - 2*log(3)^3 + 4*(6*log(3)^2 - 6*log(3) + 1)*log 
(2)^2 + 4*(log(3)^3 + 4*(3*log(3) - 2)*log(2)^2 - 8*log(2)^3 - 2*log(3)^2 
- 2*(3*log(3)^2 - 4*log(3) + 1)*log(2) + log(3))*x + log(3)^2 - 4*(2*log(3 
)^3 - 3*log(3)^2 + log(3))*log(2)) + 3*log((x - sqrt(-log(3) + 2*log(2)...
 
3.10.48.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.76 \[ \int \frac {-4-4 x+2 x^2+5 x^3+2 x^4+\left (7 x^2+6 x^3\right ) \log \left (\frac {3 e^{x+x^2}}{4}\right )+\left (-2+3 x+6 x^2\right ) \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+(1+2 x) \log ^3\left (\frac {3 e^{x+x^2}}{4}\right )}{x^3+3 x^2 \log \left (\frac {3 e^{x+x^2}}{4}\right )+3 x \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+\log ^3\left (\frac {3 e^{x+x^2}}{4}\right )} \, dx=x^{2} + x - \frac {2 \, x^{3} + 4 \, x^{2} + 2 \, x \log \left (3\right ) - 4 \, x \log \left (2\right ) - 1}{{\left (x^{2} + 2 \, x + \log \left (3\right ) - 2 \, \log \left (2\right )\right )}^{2}} \]

input
integrate(((1+2*x)*log(3/4*exp(x)*exp(x^2))^3+(6*x^2+3*x-2)*log(3/4*exp(x) 
*exp(x^2))^2+(6*x^3+7*x^2)*log(3/4*exp(x)*exp(x^2))+2*x^4+5*x^3+2*x^2-4*x- 
4)/(log(3/4*exp(x)*exp(x^2))^3+3*x*log(3/4*exp(x)*exp(x^2))^2+3*x^2*log(3/ 
4*exp(x)*exp(x^2))+x^3),x, algorithm=\
 
output
x^2 + x - (2*x^3 + 4*x^2 + 2*x*log(3) - 4*x*log(2) - 1)/(x^2 + 2*x + log(3 
) - 2*log(2))^2
 
3.10.48.9 Mupad [B] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.40 \[ \int \frac {-4-4 x+2 x^2+5 x^3+2 x^4+\left (7 x^2+6 x^3\right ) \log \left (\frac {3 e^{x+x^2}}{4}\right )+\left (-2+3 x+6 x^2\right ) \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+(1+2 x) \log ^3\left (\frac {3 e^{x+x^2}}{4}\right )}{x^3+3 x^2 \log \left (\frac {3 e^{x+x^2}}{4}\right )+3 x \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+\log ^3\left (\frac {3 e^{x+x^2}}{4}\right )} \, dx=x-\frac {2\,x^3+4\,x^2+2\,\ln \left (\frac {3}{4}\right )\,x-1}{{\left (x^2+2\,x+\ln \left (\frac {3}{4}\right )\right )}^2}+x^2 \]

input
int((log((3*exp(x^2)*exp(x))/4)^2*(3*x + 6*x^2 - 2) - 4*x + log((3*exp(x^2 
)*exp(x))/4)*(7*x^2 + 6*x^3) + 2*x^2 + 5*x^3 + 2*x^4 + log((3*exp(x^2)*exp 
(x))/4)^3*(2*x + 1) - 4)/(3*x*log((3*exp(x^2)*exp(x))/4)^2 + 3*x^2*log((3* 
exp(x^2)*exp(x))/4) + log((3*exp(x^2)*exp(x))/4)^3 + x^3),x)
 
output
x - (2*x*log(3/4) + 4*x^2 + 2*x^3 - 1)/(2*x + log(3/4) + x^2)^2 + x^2