3.10.80 \(\int \frac {x^2-2 x^3-\log (2)+e^{2+x} (9 x^2-6 x^3+7 x^4-2 x^5+x^6+(-6 x+2 x^2-2 x^3) \log (2)+\log ^2(2))}{9 x^2-6 x^3+7 x^4-2 x^5+x^6+(-6 x+2 x^2-2 x^3) \log (2)+\log ^2(2)} \, dx\) [980]

3.10.80.1 Optimal result
3.10.80.2 Mathematica [C] (verified)
3.10.80.3 Rubi [F]
3.10.80.4 Maple [A] (verified)
3.10.80.5 Fricas [A] (verification not implemented)
3.10.80.6 Sympy [A] (verification not implemented)
3.10.80.7 Maxima [A] (verification not implemented)
3.10.80.8 Giac [B] (verification not implemented)
3.10.80.9 Mupad [B] (verification not implemented)

3.10.80.1 Optimal result

Integrand size = 112, antiderivative size = 28 \[ \int \frac {x^2-2 x^3-\log (2)+e^{2+x} \left (9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)\right )}{9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)} \, dx=e^{2+x}+\frac {x}{3 x-x \left (x-x^2\right )-\log (2)} \]

output
exp(2+x)+x/(3*x-ln(2)-x*(-x^2+x))
 
3.10.80.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 66.40 (sec) , antiderivative size = 6045, normalized size of antiderivative = 215.89 \[ \int \frac {x^2-2 x^3-\log (2)+e^{2+x} \left (9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)\right )}{9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)} \, dx=\text {Result too large to show} \]

input
Integrate[(x^2 - 2*x^3 - Log[2] + E^(2 + x)*(9*x^2 - 6*x^3 + 7*x^4 - 2*x^5 
 + x^6 + (-6*x + 2*x^2 - 2*x^3)*Log[2] + Log[2]^2))/(9*x^2 - 6*x^3 + 7*x^4 
 - 2*x^5 + x^6 + (-6*x + 2*x^2 - 2*x^3)*Log[2] + Log[2]^2),x]
 
output
Result too large to show
 
3.10.80.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-2 x^3+x^2+e^{x+2} \left (x^6-2 x^5+7 x^4-6 x^3+9 x^2+\left (-2 x^3+2 x^2-6 x\right ) \log (2)+\log ^2(2)\right )-\log (2)}{x^6-2 x^5+7 x^4-6 x^3+9 x^2+\left (-2 x^3+2 x^2-6 x\right ) \log (2)+\log ^2(2)} \, dx\)

\(\Big \downarrow \) 2463

\(\displaystyle \int \frac {-2 x^3+x^2+e^{x+2} \left (x^6-2 x^5+7 x^4-6 x^3+9 x^2+\left (-2 x^3+2 x^2-6 x\right ) \log (2)+\log ^2(2)\right )-\log (2)}{\left (x^3-x^2+3 x-\log (2)\right )^2}dx\)

\(\Big \downarrow \) 7239

\(\displaystyle \int \frac {-2 x^3+x^2+e^{x+2} \left (-x^3+x^2-3 x+\log (2)\right )^2-\log (2)}{\left (x^3-x^2+3 x-\log (2)\right )^2}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (-\frac {2 x^3}{\left (x^3-x^2+3 x-\log (2)\right )^2}+\frac {x^2}{\left (x^3-x^2+3 x-\log (2)\right )^2}-\frac {\log (2)}{\left (-x^3+x^2-3 x+\log (2)\right )^2}+e^{x+2}\right )dx\)

\(\Big \downarrow \) 7299

\(\displaystyle \int \left (-\frac {2 x^3}{\left (x^3-x^2+3 x-\log (2)\right )^2}+\frac {x^2}{\left (x^3-x^2+3 x-\log (2)\right )^2}-\frac {\log (2)}{\left (-x^3+x^2-3 x+\log (2)\right )^2}+e^{x+2}\right )dx\)

input
Int[(x^2 - 2*x^3 - Log[2] + E^(2 + x)*(9*x^2 - 6*x^3 + 7*x^4 - 2*x^5 + x^6 
 + (-6*x + 2*x^2 - 2*x^3)*Log[2] + Log[2]^2))/(9*x^2 - 6*x^3 + 7*x^4 - 2*x 
^5 + x^6 + (-6*x + 2*x^2 - 2*x^3)*Log[2] + Log[2]^2),x]
 
output
$Aborted
 

3.10.80.3.1 Defintions of rubi rules used

rule 2463
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px]}, Int[ExpandIntegr 
and[u, Qx^p, x], x] /;  !SumQ[NonfreeFactors[Qx, x]]] /; PolyQ[Px, x] && Gt 
Q[Expon[Px, x], 2] &&  !BinomialQ[Px, x] &&  !TrinomialQ[Px, x] && ILtQ[p, 
0]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
3.10.80.4 Maple [A] (verified)

Time = 0.67 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.89

method result size
risch \(-\frac {x}{-x^{3}+x^{2}+\ln \left (2\right )-3 x}+{\mathrm e}^{2+x}\) \(25\)
parts \(-\frac {x}{-x^{3}+x^{2}+\ln \left (2\right )-3 x}+{\mathrm e}^{2+x}\) \(25\)
norman \(\frac {x^{2} {\mathrm e}^{2+x}-x +\ln \left (2\right ) {\mathrm e}^{2+x}-3 x \,{\mathrm e}^{2+x}-{\mathrm e}^{2+x} x^{3}}{-x^{3}+x^{2}+\ln \left (2\right )-3 x}\) \(53\)
parallelrisch \(\frac {x^{2} {\mathrm e}^{2+x}-x +\ln \left (2\right ) {\mathrm e}^{2+x}-3 x \,{\mathrm e}^{2+x}-{\mathrm e}^{2+x} x^{3}}{-x^{3}+x^{2}+\ln \left (2\right )-3 x}\) \(53\)
derivativedivides \(\text {Expression too large to display}\) \(3027\)
default \(\text {Expression too large to display}\) \(3027\)

input
int(((ln(2)^2+(-2*x^3+2*x^2-6*x)*ln(2)+x^6-2*x^5+7*x^4-6*x^3+9*x^2)*exp(2+ 
x)-ln(2)-2*x^3+x^2)/(ln(2)^2+(-2*x^3+2*x^2-6*x)*ln(2)+x^6-2*x^5+7*x^4-6*x^ 
3+9*x^2),x,method=_RETURNVERBOSE)
 
output
-x/(-x^3+x^2+ln(2)-3*x)+exp(2+x)
 
3.10.80.5 Fricas [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.50 \[ \int \frac {x^2-2 x^3-\log (2)+e^{2+x} \left (9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)\right )}{9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)} \, dx=\frac {{\left (x^{3} - x^{2} + 3 \, x - \log \left (2\right )\right )} e^{\left (x + 2\right )} + x}{x^{3} - x^{2} + 3 \, x - \log \left (2\right )} \]

input
integrate(((log(2)^2+(-2*x^3+2*x^2-6*x)*log(2)+x^6-2*x^5+7*x^4-6*x^3+9*x^2 
)*exp(2+x)-log(2)-2*x^3+x^2)/(log(2)^2+(-2*x^3+2*x^2-6*x)*log(2)+x^6-2*x^5 
+7*x^4-6*x^3+9*x^2),x, algorithm=\
 
output
((x^3 - x^2 + 3*x - log(2))*e^(x + 2) + x)/(x^3 - x^2 + 3*x - log(2))
 
3.10.80.6 Sympy [A] (verification not implemented)

Time = 0.44 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.68 \[ \int \frac {x^2-2 x^3-\log (2)+e^{2+x} \left (9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)\right )}{9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)} \, dx=\frac {x}{x^{3} - x^{2} + 3 x - \log {\left (2 \right )}} + e^{x + 2} \]

input
integrate(((ln(2)**2+(-2*x**3+2*x**2-6*x)*ln(2)+x**6-2*x**5+7*x**4-6*x**3+ 
9*x**2)*exp(2+x)-ln(2)-2*x**3+x**2)/(ln(2)**2+(-2*x**3+2*x**2-6*x)*ln(2)+x 
**6-2*x**5+7*x**4-6*x**3+9*x**2),x)
 
output
x/(x**3 - x**2 + 3*x - log(2)) + exp(x + 2)
 
3.10.80.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.75 \[ \int \frac {x^2-2 x^3-\log (2)+e^{2+x} \left (9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)\right )}{9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)} \, dx=\frac {{\left (x^{3} e^{2} - x^{2} e^{2} + 3 \, x e^{2} - e^{2} \log \left (2\right )\right )} e^{x} + x}{x^{3} - x^{2} + 3 \, x - \log \left (2\right )} \]

input
integrate(((log(2)^2+(-2*x^3+2*x^2-6*x)*log(2)+x^6-2*x^5+7*x^4-6*x^3+9*x^2 
)*exp(2+x)-log(2)-2*x^3+x^2)/(log(2)^2+(-2*x^3+2*x^2-6*x)*log(2)+x^6-2*x^5 
+7*x^4-6*x^3+9*x^2),x, algorithm=\
 
output
((x^3*e^2 - x^2*e^2 + 3*x*e^2 - e^2*log(2))*e^x + x)/(x^3 - x^2 + 3*x - lo 
g(2))
 
3.10.80.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 53 vs. \(2 (26) = 52\).

Time = 0.32 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.89 \[ \int \frac {x^2-2 x^3-\log (2)+e^{2+x} \left (9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)\right )}{9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)} \, dx=\frac {x^{3} e^{\left (x + 2\right )} - x^{2} e^{\left (x + 2\right )} + 3 \, x e^{\left (x + 2\right )} - e^{\left (x + 2\right )} \log \left (2\right ) + x}{x^{3} - x^{2} + 3 \, x - \log \left (2\right )} \]

input
integrate(((log(2)^2+(-2*x^3+2*x^2-6*x)*log(2)+x^6-2*x^5+7*x^4-6*x^3+9*x^2 
)*exp(2+x)-log(2)-2*x^3+x^2)/(log(2)^2+(-2*x^3+2*x^2-6*x)*log(2)+x^6-2*x^5 
+7*x^4-6*x^3+9*x^2),x, algorithm=\
 
output
(x^3*e^(x + 2) - x^2*e^(x + 2) + 3*x*e^(x + 2) - e^(x + 2)*log(2) + x)/(x^ 
3 - x^2 + 3*x - log(2))
 
3.10.80.9 Mupad [B] (verification not implemented)

Time = 12.61 (sec) , antiderivative size = 368, normalized size of antiderivative = 13.14 \[ \int \frac {x^2-2 x^3-\log (2)+e^{2+x} \left (9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)\right )}{9 x^2-6 x^3+7 x^4-2 x^5+x^6+\left (-6 x+2 x^2-2 x^3\right ) \log (2)+\log ^2(2)} \, dx={\mathrm {e}}^{x+2}+\left (\sum _{k=1}^6\ln \left (-1089\,\ln \left (2\right )+\mathrm {root}\left (9900\,\ln \left (2\right )-7846\,{\ln \left (2\right )}^2+2700\,{\ln \left (2\right )}^3-729\,{\ln \left (2\right )}^4-9801,z,k\right )\,\ln \left (2\right )\,6534-\mathrm {root}\left (9900\,\ln \left (2\right )-7846\,{\ln \left (2\right )}^2+2700\,{\ln \left (2\right )}^3-729\,{\ln \left (2\right )}^4-9801,z,k\right )\,x\,19602+1452\,x\,\ln \left (2\right )-\mathrm {root}\left (9900\,\ln \left (2\right )-7846\,{\ln \left (2\right )}^2+2700\,{\ln \left (2\right )}^3-729\,{\ln \left (2\right )}^4-9801,z,k\right )\,{\ln \left (2\right )}^2\,3894+\mathrm {root}\left (9900\,\ln \left (2\right )-7846\,{\ln \left (2\right )}^2+2700\,{\ln \left (2\right )}^3-729\,{\ln \left (2\right )}^4-9801,z,k\right )\,{\ln \left (2\right )}^3\,2082-\mathrm {root}\left (9900\,\ln \left (2\right )-7846\,{\ln \left (2\right )}^2+2700\,{\ln \left (2\right )}^3-729\,{\ln \left (2\right )}^4-9801,z,k\right )\,{\ln \left (2\right )}^4\,162-1832\,x\,{\ln \left (2\right )}^2+108\,x\,{\ln \left (2\right )}^3-250\,{\ln \left (2\right )}^2+567\,{\ln \left (2\right )}^3+\mathrm {root}\left (9900\,\ln \left (2\right )-7846\,{\ln \left (2\right )}^2+2700\,{\ln \left (2\right )}^3-729\,{\ln \left (2\right )}^4-9801,z,k\right )\,x\,\ln \left (2\right )\,15444-\mathrm {root}\left (9900\,\ln \left (2\right )-7846\,{\ln \left (2\right )}^2+2700\,{\ln \left (2\right )}^3-729\,{\ln \left (2\right )}^4-9801,z,k\right )\,x\,{\ln \left (2\right )}^2\,9928+\mathrm {root}\left (9900\,\ln \left (2\right )-7846\,{\ln \left (2\right )}^2+2700\,{\ln \left (2\right )}^3-729\,{\ln \left (2\right )}^4-9801,z,k\right )\,x\,{\ln \left (2\right )}^3\,2412-\mathrm {root}\left (9900\,\ln \left (2\right )-7846\,{\ln \left (2\right )}^2+2700\,{\ln \left (2\right )}^3-729\,{\ln \left (2\right )}^4-9801,z,k\right )\,x\,{\ln \left (2\right )}^4\,486\right )\,\mathrm {root}\left (9900\,\ln \left (2\right )-7846\,{\ln \left (2\right )}^2+2700\,{\ln \left (2\right )}^3-729\,{\ln \left (2\right )}^4-9801,z,k\right )\right ) \]

input
int(-(log(2) - x^2 + 2*x^3 - exp(x + 2)*(log(2)^2 - log(2)*(6*x - 2*x^2 + 
2*x^3) + 9*x^2 - 6*x^3 + 7*x^4 - 2*x^5 + x^6))/(log(2)^2 - log(2)*(6*x - 2 
*x^2 + 2*x^3) + 9*x^2 - 6*x^3 + 7*x^4 - 2*x^5 + x^6),x)
 
output
exp(x + 2) + symsum(log(6534*root(9900*log(2) - 7846*log(2)^2 + 2700*log(2 
)^3 - 729*log(2)^4 - 9801, z, k)*log(2) - 1089*log(2) - 19602*root(9900*lo 
g(2) - 7846*log(2)^2 + 2700*log(2)^3 - 729*log(2)^4 - 9801, z, k)*x + 1452 
*x*log(2) - 3894*root(9900*log(2) - 7846*log(2)^2 + 2700*log(2)^3 - 729*lo 
g(2)^4 - 9801, z, k)*log(2)^2 + 2082*root(9900*log(2) - 7846*log(2)^2 + 27 
00*log(2)^3 - 729*log(2)^4 - 9801, z, k)*log(2)^3 - 162*root(9900*log(2) - 
 7846*log(2)^2 + 2700*log(2)^3 - 729*log(2)^4 - 9801, z, k)*log(2)^4 - 183 
2*x*log(2)^2 + 108*x*log(2)^3 - 250*log(2)^2 + 567*log(2)^3 + 15444*root(9 
900*log(2) - 7846*log(2)^2 + 2700*log(2)^3 - 729*log(2)^4 - 9801, z, k)*x* 
log(2) - 9928*root(9900*log(2) - 7846*log(2)^2 + 2700*log(2)^3 - 729*log(2 
)^4 - 9801, z, k)*x*log(2)^2 + 2412*root(9900*log(2) - 7846*log(2)^2 + 270 
0*log(2)^3 - 729*log(2)^4 - 9801, z, k)*x*log(2)^3 - 486*root(9900*log(2) 
- 7846*log(2)^2 + 2700*log(2)^3 - 729*log(2)^4 - 9801, z, k)*x*log(2)^4)*r 
oot(9900*log(2) - 7846*log(2)^2 + 2700*log(2)^3 - 729*log(2)^4 - 9801, z, 
k), k, 1, 6)