3.12.69 \(\int \frac {-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} (1+x)}{-x-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} x^2+e^{\frac {1}{\log (64)}} x \log (x)} \, dx\) [1169]

3.12.69.1 Optimal result
3.12.69.2 Mathematica [A] (verified)
3.12.69.3 Rubi [F]
3.12.69.4 Maple [A] (verified)
3.12.69.5 Fricas [A] (verification not implemented)
3.12.69.6 Sympy [A] (verification not implemented)
3.12.69.7 Maxima [B] (verification not implemented)
3.12.69.8 Giac [A] (verification not implemented)
3.12.69.9 Mupad [B] (verification not implemented)

3.12.69.1 Optimal result

Integrand size = 60, antiderivative size = 22 \[ \int \frac {-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} (1+x)}{-x-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} x^2+e^{\frac {1}{\log (64)}} x \log (x)} \, dx=\log \left (2 e^x+e^{-\frac {1}{\log (64)}}-x-\log (x)\right ) \]

output
ln(2*exp(x)-x+exp(-1/6/ln(2))-ln(x))
 
3.12.69.2 Mathematica [A] (verified)

Time = 0.97 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.45 \[ \int \frac {-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} (1+x)}{-x-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} x^2+e^{\frac {1}{\log (64)}} x \log (x)} \, dx=\log \left (1+2 e^{x+\frac {1}{\log (64)}}-e^{\frac {1}{\log (64)}} x-e^{\frac {1}{\log (64)}} \log (x)\right ) \]

input
Integrate[(-2*E^(x + Log[64]^(-1))*x + E^Log[64]^(-1)*(1 + x))/(-x - 2*E^( 
x + Log[64]^(-1))*x + E^Log[64]^(-1)*x^2 + E^Log[64]^(-1)*x*Log[x]),x]
 
output
Log[1 + 2*E^(x + Log[64]^(-1)) - E^Log[64]^(-1)*x - E^Log[64]^(-1)*Log[x]]
 
3.12.69.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(x+1) e^{\frac {1}{\log (64)}}-2 x e^{x+\frac {1}{\log (64)}}}{x^2 e^{\frac {1}{\log (64)}}-x-2 x e^{x+\frac {1}{\log (64)}}+x e^{\frac {1}{\log (64)}} \log (x)} \, dx\)

\(\Big \downarrow \) 7292

\(\displaystyle \int \frac {\left (2 e^x x-x-1\right ) e^{\frac {1}{\log (64)}}}{x^2 \left (-e^{\frac {1}{\log (64)}}\right )+x+2 x e^{x+\frac {1}{\log (64)}}-x e^{\frac {1}{\log (64)}} \log (x)}dx\)

\(\Big \downarrow \) 27

\(\displaystyle e^{\frac {1}{\log (64)}} \int -\frac {-2 e^x x+x+1}{-e^{\frac {1}{\log (64)}} x^2+2 e^{x+\frac {1}{\log (64)}} x-e^{\frac {1}{\log (64)}} \log (x) x+x}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -e^{\frac {1}{\log (64)}} \int \frac {-2 e^x x+x+1}{-e^{\frac {1}{\log (64)}} x^2+2 e^{x+\frac {1}{\log (64)}} x-e^{\frac {1}{\log (64)}} \log (x) x+x}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle -e^{\frac {1}{\log (64)}} \int \left (-\frac {1}{x \left (e^{\frac {1}{\log (64)}} x-2 e^{x+\frac {1}{\log (64)}}+e^{\frac {1}{\log (64)}} \log (x)-1\right )}-\frac {2 e^x}{-e^{\frac {1}{\log (64)}} x+2 e^{x+\frac {1}{\log (64)}}-e^{\frac {1}{\log (64)}} \log (x)+1}+\frac {1}{-e^{\frac {1}{\log (64)}} x+2 e^{x+\frac {1}{\log (64)}}-e^{\frac {1}{\log (64)}} \log (x)+1}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -e^{\frac {1}{\log (64)}} \left (\int \frac {1}{-e^{\frac {1}{\log (64)}} x+2 e^{x+\frac {1}{\log (64)}}-e^{\frac {1}{\log (64)}} \log (x)+1}dx-2 \int \frac {e^x}{-e^{\frac {1}{\log (64)}} x+2 e^{x+\frac {1}{\log (64)}}-e^{\frac {1}{\log (64)}} \log (x)+1}dx-\int \frac {1}{x \left (e^{\frac {1}{\log (64)}} x-2 e^{x+\frac {1}{\log (64)}}+e^{\frac {1}{\log (64)}} \log (x)-1\right )}dx\right )\)

input
Int[(-2*E^(x + Log[64]^(-1))*x + E^Log[64]^(-1)*(1 + x))/(-x - 2*E^(x + Lo 
g[64]^(-1))*x + E^Log[64]^(-1)*x^2 + E^Log[64]^(-1)*x*Log[x]),x]
 
output
$Aborted
 

3.12.69.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.12.69.4 Maple [A] (verified)

Time = 0.31 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.86

method result size
risch \(\ln \left (x -{\mathrm e}^{-\frac {1}{6 \ln \left (2\right )}}-2 \,{\mathrm e}^{x}+\ln \left (x \right )\right )\) \(19\)
norman \(\ln \left ({\mathrm e}^{\frac {1}{6 \ln \left (2\right )}} \ln \left (x \right )-2 \,{\mathrm e}^{\frac {1}{6 \ln \left (2\right )}} {\mathrm e}^{x}+x \,{\mathrm e}^{\frac {1}{6 \ln \left (2\right )}}-1\right )\) \(34\)
parallelrisch \(\ln \left (\left ({\mathrm e}^{\frac {1}{6 \ln \left (2\right )}} \ln \left (x \right )-2 \,{\mathrm e}^{\frac {1}{6 \ln \left (2\right )}} {\mathrm e}^{x}+x \,{\mathrm e}^{\frac {1}{6 \ln \left (2\right )}}-1\right ) {\mathrm e}^{-\frac {1}{6 \ln \left (2\right )}}\right )\) \(44\)

input
int((-2*x*exp(1/6/ln(2))*exp(x)+(1+x)*exp(1/6/ln(2)))/(x*exp(1/6/ln(2))*ln 
(x)-2*x*exp(1/6/ln(2))*exp(x)+x^2*exp(1/6/ln(2))-x),x,method=_RETURNVERBOS 
E)
 
output
ln(x-exp(-1/6/ln(2))-2*exp(x)+ln(x))
 
3.12.69.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.73 \[ \int \frac {-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} (1+x)}{-x-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} x^2+e^{\frac {1}{\log (64)}} x \log (x)} \, dx=\log \left (x e^{\left (\frac {1}{6 \, \log \left (2\right )}\right )} + e^{\left (\frac {1}{6 \, \log \left (2\right )}\right )} \log \left (x\right ) - 2 \, e^{\left (\frac {6 \, x \log \left (2\right ) + 1}{6 \, \log \left (2\right )}\right )} - 1\right ) \]

input
integrate((-2*x*exp(1/6/log(2))*exp(x)+(1+x)*exp(1/6/log(2)))/(x*exp(1/6/l 
og(2))*log(x)-2*x*exp(1/6/log(2))*exp(x)+x^2*exp(1/6/log(2))-x),x, algorit 
hm=\
 
output
log(x*e^(1/6/log(2)) + e^(1/6/log(2))*log(x) - 2*e^(1/6*(6*x*log(2) + 1)/l 
og(2)) - 1)
 
3.12.69.6 Sympy [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.68 \[ \int \frac {-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} (1+x)}{-x-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} x^2+e^{\frac {1}{\log (64)}} x \log (x)} \, dx=\log {\left (\frac {- x e^{\frac {1}{6 \log {\left (2 \right )}}} - e^{\frac {1}{6 \log {\left (2 \right )}}} \log {\left (x \right )} + 1}{2 e^{\frac {1}{6 \log {\left (2 \right )}}}} + e^{x} \right )} \]

input
integrate((-2*x*exp(1/6/ln(2))*exp(x)+(1+x)*exp(1/6/ln(2)))/(x*exp(1/6/ln( 
2))*ln(x)-2*x*exp(1/6/ln(2))*exp(x)+x**2*exp(1/6/ln(2))-x),x)
 
output
log((-x*exp(1/(6*log(2))) - exp(1/(6*log(2)))*log(x) + 1)*exp(-1/(6*log(2) 
))/2 + exp(x))
 
3.12.69.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 42 vs. \(2 (20) = 40\).

Time = 0.32 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.91 \[ \int \frac {-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} (1+x)}{-x-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} x^2+e^{\frac {1}{\log (64)}} x \log (x)} \, dx=\log \left (-\frac {1}{2} \, {\left (x e^{\left (\frac {1}{6 \, \log \left (2\right )}\right )} + e^{\left (\frac {1}{6 \, \log \left (2\right )}\right )} \log \left (x\right ) - 2 \, e^{\left (x + \frac {1}{6 \, \log \left (2\right )}\right )} - 1\right )} e^{\left (-\frac {1}{6 \, \log \left (2\right )}\right )}\right ) \]

input
integrate((-2*x*exp(1/6/log(2))*exp(x)+(1+x)*exp(1/6/log(2)))/(x*exp(1/6/l 
og(2))*log(x)-2*x*exp(1/6/log(2))*exp(x)+x^2*exp(1/6/log(2))-x),x, algorit 
hm=\
 
output
log(-1/2*(x*e^(1/6/log(2)) + e^(1/6/log(2))*log(x) - 2*e^(x + 1/6/log(2)) 
- 1)*e^(-1/6/log(2)))
 
3.12.69.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.59 \[ \int \frac {-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} (1+x)}{-x-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} x^2+e^{\frac {1}{\log (64)}} x \log (x)} \, dx=\log \left (-x e^{\left (\frac {1}{6 \, \log \left (2\right )}\right )} - e^{\left (\frac {1}{6 \, \log \left (2\right )}\right )} \log \left (x\right ) + 2 \, e^{\left (x + \frac {1}{6 \, \log \left (2\right )}\right )} + 1\right ) \]

input
integrate((-2*x*exp(1/6/log(2))*exp(x)+(1+x)*exp(1/6/log(2)))/(x*exp(1/6/l 
og(2))*log(x)-2*x*exp(1/6/log(2))*exp(x)+x^2*exp(1/6/log(2))-x),x, algorit 
hm=\
 
output
log(-x*e^(1/6/log(2)) - e^(1/6/log(2))*log(x) + 2*e^(x + 1/6/log(2)) + 1)
 
3.12.69.9 Mupad [B] (verification not implemented)

Time = 13.17 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.82 \[ \int \frac {-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} (1+x)}{-x-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} x^2+e^{\frac {1}{\log (64)}} x \log (x)} \, dx=\ln \left (x-{\mathrm {e}}^{-\frac {1}{6\,\ln \left (2\right )}}-2\,{\mathrm {e}}^x+\ln \left (x\right )\right ) \]

input
int(-(exp(1/(6*log(2)))*(x + 1) - 2*x*exp(1/(6*log(2)))*exp(x))/(x - x^2*e 
xp(1/(6*log(2))) + 2*x*exp(1/(6*log(2)))*exp(x) - x*exp(1/(6*log(2)))*log( 
x)),x)
 
output
log(x - exp(-1/(6*log(2))) - 2*exp(x) + log(x))