3.14.51 \(\int \frac {e^{5 x} (e^{2 x} (4+20 x)+e^x (-28 x^2+6 e^3 x^2-12 x^3))}{16 e^{2 x}+25 x^2+e^6 x^2+20 x^3+4 x^4+e^x (-40 x+8 e^3 x-16 x^2)+e^3 (-10 x^2-4 x^3)} \, dx\) [1351]

3.14.51.1 Optimal result
3.14.51.2 Mathematica [A] (verified)
3.14.51.3 Rubi [F]
3.14.51.4 Maple [A] (verified)
3.14.51.5 Fricas [A] (verification not implemented)
3.14.51.6 Sympy [B] (verification not implemented)
3.14.51.7 Maxima [A] (verification not implemented)
3.14.51.8 Giac [A] (verification not implemented)
3.14.51.9 Mupad [F(-1)]

3.14.51.1 Optimal result

Integrand size = 107, antiderivative size = 31 \[ \int \frac {e^{5 x} \left (e^{2 x} (4+20 x)+e^x \left (-28 x^2+6 e^3 x^2-12 x^3\right )\right )}{16 e^{2 x}+25 x^2+e^6 x^2+20 x^3+4 x^4+e^x \left (-40 x+8 e^3 x-16 x^2\right )+e^3 \left (-10 x^2-4 x^3\right )} \, dx=\frac {e^{5 x}}{\frac {4}{x}-e^{-x} \left (5-e^3+2 x\right )} \]

output
exp(5*x)/(4/x-(2*x+5-exp(3))/exp(x))
 
3.14.51.2 Mathematica [A] (verified)

Time = 11.99 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.97 \[ \int \frac {e^{5 x} \left (e^{2 x} (4+20 x)+e^x \left (-28 x^2+6 e^3 x^2-12 x^3\right )\right )}{16 e^{2 x}+25 x^2+e^6 x^2+20 x^3+4 x^4+e^x \left (-40 x+8 e^3 x-16 x^2\right )+e^3 \left (-10 x^2-4 x^3\right )} \, dx=\frac {2 e^{6 x} x}{8 e^x+2 e^3 x-2 x (5+2 x)} \]

input
Integrate[(E^(5*x)*(E^(2*x)*(4 + 20*x) + E^x*(-28*x^2 + 6*E^3*x^2 - 12*x^3 
)))/(16*E^(2*x) + 25*x^2 + E^6*x^2 + 20*x^3 + 4*x^4 + E^x*(-40*x + 8*E^3*x 
 - 16*x^2) + E^3*(-10*x^2 - 4*x^3)),x]
 
output
(2*E^(6*x)*x)/(8*E^x + 2*E^3*x - 2*x*(5 + 2*x))
 
3.14.51.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{5 x} \left (e^x \left (-12 x^3+6 e^3 x^2-28 x^2\right )+e^{2 x} (20 x+4)\right )}{4 x^4+20 x^3+e^6 x^2+25 x^2+e^x \left (-16 x^2+8 e^3 x-40 x\right )+e^3 \left (-4 x^3-10 x^2\right )+16 e^{2 x}} \, dx\)

\(\Big \downarrow \) 6

\(\displaystyle \int \frac {e^{5 x} \left (e^x \left (-12 x^3+6 e^3 x^2-28 x^2\right )+e^{2 x} (20 x+4)\right )}{4 x^4+20 x^3+\left (25+e^6\right ) x^2+e^x \left (-16 x^2+8 e^3 x-40 x\right )+e^3 \left (-4 x^3-10 x^2\right )+16 e^{2 x}}dx\)

\(\Big \downarrow \) 7239

\(\displaystyle \int \frac {2 e^{6 x} \left (-2 (3 x+7) x^2+3 e^3 x^2+2 e^x (5 x+1)\right )}{\left (-((2 x+5) x)+e^3 x+4 e^x\right )^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \int \frac {e^{6 x} \left (-2 (3 x+7) x^2+3 e^3 x^2+2 e^x (5 x+1)\right )}{\left (-((2 x+5) x)+e^3 x+4 e^x\right )^2}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle 2 \int \left (\frac {e^{6 x} (5 x+1)}{2 \left (-2 x^2-5 \left (1-\frac {e^3}{5}\right ) x+4 e^x\right )}+\frac {e^{6 x} x \left (-2 x^2-\left (1-e^3\right ) x-e^3+5\right )}{2 \left (-2 x^2-5 \left (1-\frac {e^3}{5}\right ) x+4 e^x\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 \left (\frac {1}{2} \left (5-e^3\right ) \int \frac {e^{6 x} x}{\left (-2 x^2-5 \left (1-\frac {e^3}{5}\right ) x+4 e^x\right )^2}dx-\frac {1}{2} \left (1-e^3\right ) \int \frac {e^{6 x} x^2}{\left (-2 x^2-5 \left (1-\frac {e^3}{5}\right ) x+4 e^x\right )^2}dx+\frac {1}{2} \int \frac {e^{6 x}}{-2 x^2-5 \left (1-\frac {e^3}{5}\right ) x+4 e^x}dx+\frac {5}{2} \int \frac {e^{6 x} x}{-2 x^2-5 \left (1-\frac {e^3}{5}\right ) x+4 e^x}dx-\int \frac {e^{6 x} x^3}{\left (-2 x^2-5 \left (1-\frac {e^3}{5}\right ) x+4 e^x\right )^2}dx\right )\)

input
Int[(E^(5*x)*(E^(2*x)*(4 + 20*x) + E^x*(-28*x^2 + 6*E^3*x^2 - 12*x^3)))/(1 
6*E^(2*x) + 25*x^2 + E^6*x^2 + 20*x^3 + 4*x^4 + E^x*(-40*x + 8*E^3*x - 16* 
x^2) + E^3*(-10*x^2 - 4*x^3)),x]
 
output
$Aborted
 

3.14.51.3.1 Defintions of rubi rules used

rule 6
Int[(u_.)*((v_.) + (a_.)*(Fx_) + (b_.)*(Fx_))^(p_.), x_Symbol] :> Int[u*(v 
+ (a + b)*Fx)^p, x] /; FreeQ[{a, b}, x] &&  !FreeQ[Fx, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.14.51.4 Maple [A] (verified)

Time = 0.66 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.84

method result size
risch \(\frac {x \,{\mathrm e}^{6 x}}{x \,{\mathrm e}^{3}-2 x^{2}+4 \,{\mathrm e}^{x}-5 x}\) \(26\)
parallelrisch \(\frac {{\mathrm e}^{5 x} x \,{\mathrm e}^{x}}{x \,{\mathrm e}^{3}-2 x^{2}+4 \,{\mathrm e}^{x}-5 x}\) \(28\)

input
int(((20*x+4)*exp(x)^2+(6*x^2*exp(3)-12*x^3-28*x^2)*exp(x))*exp(5*x)/(16*e 
xp(x)^2+(8*x*exp(3)-16*x^2-40*x)*exp(x)+x^2*exp(3)^2+(-4*x^3-10*x^2)*exp(3 
)+4*x^4+20*x^3+25*x^2),x,method=_RETURNVERBOSE)
 
output
x*exp(6*x)/(x*exp(3)-2*x^2+4*exp(x)-5*x)
 
3.14.51.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.87 \[ \int \frac {e^{5 x} \left (e^{2 x} (4+20 x)+e^x \left (-28 x^2+6 e^3 x^2-12 x^3\right )\right )}{16 e^{2 x}+25 x^2+e^6 x^2+20 x^3+4 x^4+e^x \left (-40 x+8 e^3 x-16 x^2\right )+e^3 \left (-10 x^2-4 x^3\right )} \, dx=-\frac {x e^{\left (6 \, x\right )}}{2 \, x^{2} - x e^{3} + 5 \, x - 4 \, e^{x}} \]

input
integrate(((20*x+4)*exp(x)^2+(6*x^2*exp(3)-12*x^3-28*x^2)*exp(x))*exp(5*x) 
/(16*exp(x)^2+(8*x*exp(3)-16*x^2-40*x)*exp(x)+x^2*exp(3)^2+(-4*x^3-10*x^2) 
*exp(3)+4*x^4+20*x^3+25*x^2),x, algorithm=\
 
output
-x*e^(6*x)/(2*x^2 - x*e^3 + 5*x - 4*e^x)
 
3.14.51.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 646 vs. \(2 (19) = 38\).

Time = 0.48 (sec) , antiderivative size = 646, normalized size of antiderivative = 20.84 \[ \int \frac {e^{5 x} \left (e^{2 x} (4+20 x)+e^x \left (-28 x^2+6 e^3 x^2-12 x^3\right )\right )}{16 e^{2 x}+25 x^2+e^6 x^2+20 x^3+4 x^4+e^x \left (-40 x+8 e^3 x-16 x^2\right )+e^3 \left (-10 x^2-4 x^3\right )} \, dx =\text {Too large to display} \]

input
integrate(((20*x+4)*exp(x)**2+(6*x**2*exp(3)-12*x**3-28*x**2)*exp(x))*exp( 
5*x)/(16*exp(x)**2+(8*x*exp(3)-16*x**2-40*x)*exp(x)+x**2*exp(3)**2+(-4*x** 
3-10*x**2)*exp(3)+4*x**4+20*x**3+25*x**2),x)
 
output
x**11/128 + x**10*(25/256 - 5*exp(3)/256) + x**9*(-25*exp(3)/128 + 125/256 
 + 5*exp(6)/256) + x**8*(-5*exp(9)/512 - 375*exp(3)/512 + 625/512 + 75*exp 
(6)/512) + x**7*(-25*exp(9)/512 - 625*exp(3)/512 + 3125/2048 + 375*exp(6)/ 
1024 + 5*exp(12)/2048) + x**6*(-exp(15)/4096 - 125*exp(9)/2048 - 3125*exp( 
3)/4096 + 3125/4096 + 625*exp(6)/2048 + 25*exp(12)/4096) + x*exp(5*x)/4 + 
(134217728*x**3 - 67108864*x**2*exp(3) + 335544320*x**2)*exp(4*x)/10737418 
24 + (67108864*x**5 - 67108864*x**4*exp(3) + 335544320*x**4 - 167772160*x* 
*3*exp(3) + 419430400*x**3 + 16777216*x**3*exp(6))*exp(3*x)/1073741824 + ( 
33554432*x**7 - 50331648*x**6*exp(3) + 251658240*x**6 - 251658240*x**5*exp 
(3) + 629145600*x**5 + 25165824*x**5*exp(6) - 4194304*x**4*exp(9) - 314572 
800*x**4*exp(3) + 524288000*x**4 + 62914560*x**4*exp(6))*exp(2*x)/10737418 
24 + (16777216*x**9 - 33554432*x**8*exp(3) + 167772160*x**8 - 251658240*x* 
*7*exp(3) + 629145600*x**7 + 25165824*x**7*exp(6) - 8388608*x**6*exp(9) - 
629145600*x**6*exp(3) + 1048576000*x**6 + 125829120*x**6*exp(6) - 20971520 
*x**5*exp(9) - 524288000*x**5*exp(3) + 655360000*x**5 + 157286400*x**5*exp 
(6) + 1048576*x**5*exp(12))*exp(x)/1073741824 + (64*x**13 - 192*x**12*exp( 
3) + 960*x**12 - 2400*x**11*exp(3) + 6000*x**11 + 240*x**11*exp(6) - 160*x 
**10*exp(9) - 12000*x**10*exp(3) + 20000*x**10 + 2400*x**10*exp(6) - 1200* 
x**9*exp(9) - 30000*x**9*exp(3) + 37500*x**9 + 9000*x**9*exp(6) + 60*x**9* 
exp(12) - 12*x**8*exp(15) - 3000*x**8*exp(9) - 37500*x**8*exp(3) + 3750...
 
3.14.51.7 Maxima [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.84 \[ \int \frac {e^{5 x} \left (e^{2 x} (4+20 x)+e^x \left (-28 x^2+6 e^3 x^2-12 x^3\right )\right )}{16 e^{2 x}+25 x^2+e^6 x^2+20 x^3+4 x^4+e^x \left (-40 x+8 e^3 x-16 x^2\right )+e^3 \left (-10 x^2-4 x^3\right )} \, dx=-\frac {x e^{\left (6 \, x\right )}}{2 \, x^{2} - x {\left (e^{3} - 5\right )} - 4 \, e^{x}} \]

input
integrate(((20*x+4)*exp(x)^2+(6*x^2*exp(3)-12*x^3-28*x^2)*exp(x))*exp(5*x) 
/(16*exp(x)^2+(8*x*exp(3)-16*x^2-40*x)*exp(x)+x^2*exp(3)^2+(-4*x^3-10*x^2) 
*exp(3)+4*x^4+20*x^3+25*x^2),x, algorithm=\
 
output
-x*e^(6*x)/(2*x^2 - x*(e^3 - 5) - 4*e^x)
 
3.14.51.8 Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.87 \[ \int \frac {e^{5 x} \left (e^{2 x} (4+20 x)+e^x \left (-28 x^2+6 e^3 x^2-12 x^3\right )\right )}{16 e^{2 x}+25 x^2+e^6 x^2+20 x^3+4 x^4+e^x \left (-40 x+8 e^3 x-16 x^2\right )+e^3 \left (-10 x^2-4 x^3\right )} \, dx=-\frac {x e^{\left (6 \, x\right )}}{2 \, x^{2} - x e^{3} + 5 \, x - 4 \, e^{x}} \]

input
integrate(((20*x+4)*exp(x)^2+(6*x^2*exp(3)-12*x^3-28*x^2)*exp(x))*exp(5*x) 
/(16*exp(x)^2+(8*x*exp(3)-16*x^2-40*x)*exp(x)+x^2*exp(3)^2+(-4*x^3-10*x^2) 
*exp(3)+4*x^4+20*x^3+25*x^2),x, algorithm=\
 
output
-x*e^(6*x)/(2*x^2 - x*e^3 + 5*x - 4*e^x)
 
3.14.51.9 Mupad [F(-1)]

Timed out. \[ \int \frac {e^{5 x} \left (e^{2 x} (4+20 x)+e^x \left (-28 x^2+6 e^3 x^2-12 x^3\right )\right )}{16 e^{2 x}+25 x^2+e^6 x^2+20 x^3+4 x^4+e^x \left (-40 x+8 e^3 x-16 x^2\right )+e^3 \left (-10 x^2-4 x^3\right )} \, dx=-\int \frac {{\mathrm {e}}^{5\,x}\,\left ({\mathrm {e}}^x\,\left (28\,x^2-6\,x^2\,{\mathrm {e}}^3+12\,x^3\right )-{\mathrm {e}}^{2\,x}\,\left (20\,x+4\right )\right )}{16\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^3\,\left (4\,x^3+10\,x^2\right )+x^2\,{\mathrm {e}}^6+25\,x^2+20\,x^3+4\,x^4-{\mathrm {e}}^x\,\left (40\,x-8\,x\,{\mathrm {e}}^3+16\,x^2\right )} \,d x \]

input
int(-(exp(5*x)*(exp(x)*(28*x^2 - 6*x^2*exp(3) + 12*x^3) - exp(2*x)*(20*x + 
 4)))/(16*exp(2*x) - exp(3)*(10*x^2 + 4*x^3) + x^2*exp(6) + 25*x^2 + 20*x^ 
3 + 4*x^4 - exp(x)*(40*x - 8*x*exp(3) + 16*x^2)),x)
 
output
-int((exp(5*x)*(exp(x)*(28*x^2 - 6*x^2*exp(3) + 12*x^3) - exp(2*x)*(20*x + 
 4)))/(16*exp(2*x) - exp(3)*(10*x^2 + 4*x^3) + x^2*exp(6) + 25*x^2 + 20*x^ 
3 + 4*x^4 - exp(x)*(40*x - 8*x*exp(3) + 16*x^2)), x)