3.20.66 \(\int \frac {e^{\frac {2+8 x+2 x^2+(x+2 x^2+x^3) \log (\frac {1}{x})}{2+2 x+(x+x^2) \log (\frac {1}{x})}} (12+12 x+8 x^2+(4 x+4 x^2+4 x^3) \log (\frac {1}{x})+(x^2+2 x^3+x^4) \log ^2(\frac {1}{x}))}{4+8 x+4 x^2+(4 x+8 x^2+4 x^3) \log (\frac {1}{x})+(x^2+2 x^3+x^4) \log ^2(\frac {1}{x})} \, dx\) [1966]

3.20.66.1 Optimal result
3.20.66.2 Mathematica [A] (verified)
3.20.66.3 Rubi [F]
3.20.66.4 Maple [B] (verified)
3.20.66.5 Fricas [A] (verification not implemented)
3.20.66.6 Sympy [B] (verification not implemented)
3.20.66.7 Maxima [A] (verification not implemented)
3.20.66.8 Giac [B] (verification not implemented)
3.20.66.9 Mupad [B] (verification not implemented)

3.20.66.1 Optimal result

Integrand size = 144, antiderivative size = 24 \[ \int \frac {e^{\frac {2+8 x+2 x^2+\left (x+2 x^2+x^3\right ) \log \left (\frac {1}{x}\right )}{2+2 x+\left (x+x^2\right ) \log \left (\frac {1}{x}\right )}} \left (12+12 x+8 x^2+\left (4 x+4 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )\right )}{4+8 x+4 x^2+\left (4 x+8 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )} \, dx=e^{1+x+\frac {4}{(1+x) \left (\frac {2}{x}+\log \left (\frac {1}{x}\right )\right )}} \]

output
exp(x+1+4/(1+x)/(ln(1/x)+2/x))
 
3.20.66.2 Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.67 \[ \int \frac {e^{\frac {2+8 x+2 x^2+\left (x+2 x^2+x^3\right ) \log \left (\frac {1}{x}\right )}{2+2 x+\left (x+x^2\right ) \log \left (\frac {1}{x}\right )}} \left (12+12 x+8 x^2+\left (4 x+4 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )\right )}{4+8 x+4 x^2+\left (4 x+8 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )} \, dx=e^{\frac {2 \left (1+4 x+x^2\right )+x (1+x)^2 \log \left (\frac {1}{x}\right )}{(1+x) \left (2+x \log \left (\frac {1}{x}\right )\right )}} \]

input
Integrate[(E^((2 + 8*x + 2*x^2 + (x + 2*x^2 + x^3)*Log[x^(-1)])/(2 + 2*x + 
 (x + x^2)*Log[x^(-1)]))*(12 + 12*x + 8*x^2 + (4*x + 4*x^2 + 4*x^3)*Log[x^ 
(-1)] + (x^2 + 2*x^3 + x^4)*Log[x^(-1)]^2))/(4 + 8*x + 4*x^2 + (4*x + 8*x^ 
2 + 4*x^3)*Log[x^(-1)] + (x^2 + 2*x^3 + x^4)*Log[x^(-1)]^2),x]
 
output
E^((2*(1 + 4*x + x^2) + x*(1 + x)^2*Log[x^(-1)])/((1 + x)*(2 + x*Log[x^(-1 
)])))
 
3.20.66.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (8 x^2+\left (4 x^3+4 x^2+4 x\right ) \log \left (\frac {1}{x}\right )+\left (x^4+2 x^3+x^2\right ) \log ^2\left (\frac {1}{x}\right )+12 x+12\right ) \exp \left (\frac {2 x^2+\left (x^3+2 x^2+x\right ) \log \left (\frac {1}{x}\right )+8 x+2}{\left (x^2+x\right ) \log \left (\frac {1}{x}\right )+2 x+2}\right )}{4 x^2+\left (4 x^3+8 x^2+4 x\right ) \log \left (\frac {1}{x}\right )+\left (x^4+2 x^3+x^2\right ) \log ^2\left (\frac {1}{x}\right )+8 x+4} \, dx\)

\(\Big \downarrow \) 7292

\(\displaystyle \int \frac {\left (8 x^2+\left (4 x^3+4 x^2+4 x\right ) \log \left (\frac {1}{x}\right )+\left (x^4+2 x^3+x^2\right ) \log ^2\left (\frac {1}{x}\right )+12 x+12\right ) \exp \left (\frac {2 x^2+\left (x^3+2 x^2+x\right ) \log \left (\frac {1}{x}\right )+8 x+2}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )}\right )}{(x+1)^2 \left (x \log \left (\frac {1}{x}\right )+2\right )^2}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (-\frac {4 x \exp \left (\frac {2 x^2+\left (x^3+2 x^2+x\right ) \log \left (\frac {1}{x}\right )+8 x+2}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )}\right )}{(x+1)^2 \left (x \log \left (\frac {1}{x}\right )+2\right )}+\exp \left (\frac {2 x^2+\left (x^3+2 x^2+x\right ) \log \left (\frac {1}{x}\right )+8 x+2}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )}\right )+\frac {4 (x+2) \exp \left (\frac {2 x^2+\left (x^3+2 x^2+x\right ) \log \left (\frac {1}{x}\right )+8 x+2}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )}\right )}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \int \exp \left (\frac {2 x^2+8 x+\left (x^3+2 x^2+x\right ) \log \left (\frac {1}{x}\right )+2}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )}\right )dx+4 \int \frac {\exp \left (\frac {2 x^2+8 x+\left (x^3+2 x^2+x\right ) \log \left (\frac {1}{x}\right )+2}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )}\right )}{\left (x \log \left (\frac {1}{x}\right )+2\right )^2}dx+4 \int \frac {\exp \left (\frac {2 x^2+8 x+\left (x^3+2 x^2+x\right ) \log \left (\frac {1}{x}\right )+2}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )}\right )}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )^2}dx+4 \int \frac {\exp \left (\frac {2 x^2+8 x+\left (x^3+2 x^2+x\right ) \log \left (\frac {1}{x}\right )+2}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )}\right )}{(x+1)^2 \left (x \log \left (\frac {1}{x}\right )+2\right )}dx-4 \int \frac {\exp \left (\frac {2 x^2+8 x+\left (x^3+2 x^2+x\right ) \log \left (\frac {1}{x}\right )+2}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )}\right )}{(x+1) \left (x \log \left (\frac {1}{x}\right )+2\right )}dx\)

input
Int[(E^((2 + 8*x + 2*x^2 + (x + 2*x^2 + x^3)*Log[x^(-1)])/(2 + 2*x + (x + 
x^2)*Log[x^(-1)]))*(12 + 12*x + 8*x^2 + (4*x + 4*x^2 + 4*x^3)*Log[x^(-1)] 
+ (x^2 + 2*x^3 + x^4)*Log[x^(-1)]^2))/(4 + 8*x + 4*x^2 + (4*x + 8*x^2 + 4* 
x^3)*Log[x^(-1)] + (x^2 + 2*x^3 + x^4)*Log[x^(-1)]^2),x]
 
output
$Aborted
 

3.20.66.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.20.66.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(48\) vs. \(2(23)=46\).

Time = 8.81 (sec) , antiderivative size = 49, normalized size of antiderivative = 2.04

method result size
parallelrisch \({\mathrm e}^{\frac {\left (x^{3}+2 x^{2}+x \right ) \ln \left (\frac {1}{x}\right )+2 x^{2}+8 x +2}{x^{2} \ln \left (\frac {1}{x}\right )+x \ln \left (\frac {1}{x}\right )+2 x +2}}\) \(49\)
risch \({\mathrm e}^{\frac {x^{3} \ln \left (\frac {1}{x}\right )+2 x^{2} \ln \left (\frac {1}{x}\right )+x \ln \left (\frac {1}{x}\right )+2 x^{2}+8 x +2}{\left (1+x \right ) \left (x \ln \left (\frac {1}{x}\right )+2\right )}}\) \(51\)

input
int(((x^4+2*x^3+x^2)*ln(1/x)^2+(4*x^3+4*x^2+4*x)*ln(1/x)+8*x^2+12*x+12)*ex 
p(((x^3+2*x^2+x)*ln(1/x)+2*x^2+8*x+2)/((x^2+x)*ln(1/x)+2*x+2))/((x^4+2*x^3 
+x^2)*ln(1/x)^2+(4*x^3+8*x^2+4*x)*ln(1/x)+4*x^2+8*x+4),x,method=_RETURNVER 
BOSE)
 
output
exp(((x^3+2*x^2+x)*ln(1/x)+2*x^2+8*x+2)/(x^2*ln(1/x)+x*ln(1/x)+2*x+2))
 
3.20.66.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.83 \[ \int \frac {e^{\frac {2+8 x+2 x^2+\left (x+2 x^2+x^3\right ) \log \left (\frac {1}{x}\right )}{2+2 x+\left (x+x^2\right ) \log \left (\frac {1}{x}\right )}} \left (12+12 x+8 x^2+\left (4 x+4 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )\right )}{4+8 x+4 x^2+\left (4 x+8 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )} \, dx=e^{\left (\frac {2 \, x^{2} + {\left (x^{3} + 2 \, x^{2} + x\right )} \log \left (\frac {1}{x}\right ) + 8 \, x + 2}{{\left (x^{2} + x\right )} \log \left (\frac {1}{x}\right ) + 2 \, x + 2}\right )} \]

input
integrate(((x^4+2*x^3+x^2)*log(1/x)^2+(4*x^3+4*x^2+4*x)*log(1/x)+8*x^2+12* 
x+12)*exp(((x^3+2*x^2+x)*log(1/x)+2*x^2+8*x+2)/((x^2+x)*log(1/x)+2*x+2))/( 
(x^4+2*x^3+x^2)*log(1/x)^2+(4*x^3+8*x^2+4*x)*log(1/x)+4*x^2+8*x+4),x, algo 
rithm=\
 
output
e^((2*x^2 + (x^3 + 2*x^2 + x)*log(1/x) + 8*x + 2)/((x^2 + x)*log(1/x) + 2* 
x + 2))
 
3.20.66.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 41 vs. \(2 (17) = 34\).

Time = 0.29 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.71 \[ \int \frac {e^{\frac {2+8 x+2 x^2+\left (x+2 x^2+x^3\right ) \log \left (\frac {1}{x}\right )}{2+2 x+\left (x+x^2\right ) \log \left (\frac {1}{x}\right )}} \left (12+12 x+8 x^2+\left (4 x+4 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )\right )}{4+8 x+4 x^2+\left (4 x+8 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )} \, dx=e^{\frac {2 x^{2} + 8 x + \left (x^{3} + 2 x^{2} + x\right ) \log {\left (\frac {1}{x} \right )} + 2}{2 x + \left (x^{2} + x\right ) \log {\left (\frac {1}{x} \right )} + 2}} \]

input
integrate(((x**4+2*x**3+x**2)*ln(1/x)**2+(4*x**3+4*x**2+4*x)*ln(1/x)+8*x** 
2+12*x+12)*exp(((x**3+2*x**2+x)*ln(1/x)+2*x**2+8*x+2)/((x**2+x)*ln(1/x)+2* 
x+2))/((x**4+2*x**3+x**2)*ln(1/x)**2+(4*x**3+8*x**2+4*x)*ln(1/x)+4*x**2+8* 
x+4),x)
 
output
exp((2*x**2 + 8*x + (x**3 + 2*x**2 + x)*log(1/x) + 2)/(2*x + (x**2 + x)*lo 
g(1/x) + 2))
 
3.20.66.7 Maxima [A] (verification not implemented)

Time = 0.41 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.58 \[ \int \frac {e^{\frac {2+8 x+2 x^2+\left (x+2 x^2+x^3\right ) \log \left (\frac {1}{x}\right )}{2+2 x+\left (x+x^2\right ) \log \left (\frac {1}{x}\right )}} \left (12+12 x+8 x^2+\left (4 x+4 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )\right )}{4+8 x+4 x^2+\left (4 x+8 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )} \, dx=e^{\left (x - \frac {8}{x \log \left (x\right )^{2} + 2 \, {\left (x - 1\right )} \log \left (x\right ) - 4} - \frac {4}{{\left (x + 1\right )} \log \left (x\right ) + 2 \, x + 2} + 1\right )} \]

input
integrate(((x^4+2*x^3+x^2)*log(1/x)^2+(4*x^3+4*x^2+4*x)*log(1/x)+8*x^2+12* 
x+12)*exp(((x^3+2*x^2+x)*log(1/x)+2*x^2+8*x+2)/((x^2+x)*log(1/x)+2*x+2))/( 
(x^4+2*x^3+x^2)*log(1/x)^2+(4*x^3+8*x^2+4*x)*log(1/x)+4*x^2+8*x+4),x, algo 
rithm=\
 
output
e^(x - 8/(x*log(x)^2 + 2*(x - 1)*log(x) - 4) - 4/((x + 1)*log(x) + 2*x + 2 
) + 1)
 
3.20.66.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 131 vs. \(2 (23) = 46\).

Time = 0.46 (sec) , antiderivative size = 131, normalized size of antiderivative = 5.46 \[ \int \frac {e^{\frac {2+8 x+2 x^2+\left (x+2 x^2+x^3\right ) \log \left (\frac {1}{x}\right )}{2+2 x+\left (x+x^2\right ) \log \left (\frac {1}{x}\right )}} \left (12+12 x+8 x^2+\left (4 x+4 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )\right )}{4+8 x+4 x^2+\left (4 x+8 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )} \, dx=e^{\left (\frac {x^{3} \log \left (x\right )}{x^{2} \log \left (x\right ) + x \log \left (x\right ) - 2 \, x - 2} + \frac {2 \, x^{2} \log \left (x\right )}{x^{2} \log \left (x\right ) + x \log \left (x\right ) - 2 \, x - 2} - \frac {2 \, x^{2}}{x^{2} \log \left (x\right ) + x \log \left (x\right ) - 2 \, x - 2} + \frac {x \log \left (x\right )}{x^{2} \log \left (x\right ) + x \log \left (x\right ) - 2 \, x - 2} - \frac {8 \, x}{x^{2} \log \left (x\right ) + x \log \left (x\right ) - 2 \, x - 2} - \frac {2}{x^{2} \log \left (x\right ) + x \log \left (x\right ) - 2 \, x - 2}\right )} \]

input
integrate(((x^4+2*x^3+x^2)*log(1/x)^2+(4*x^3+4*x^2+4*x)*log(1/x)+8*x^2+12* 
x+12)*exp(((x^3+2*x^2+x)*log(1/x)+2*x^2+8*x+2)/((x^2+x)*log(1/x)+2*x+2))/( 
(x^4+2*x^3+x^2)*log(1/x)^2+(4*x^3+8*x^2+4*x)*log(1/x)+4*x^2+8*x+4),x, algo 
rithm=\
 
output
e^(x^3*log(x)/(x^2*log(x) + x*log(x) - 2*x - 2) + 2*x^2*log(x)/(x^2*log(x) 
 + x*log(x) - 2*x - 2) - 2*x^2/(x^2*log(x) + x*log(x) - 2*x - 2) + x*log(x 
)/(x^2*log(x) + x*log(x) - 2*x - 2) - 8*x/(x^2*log(x) + x*log(x) - 2*x - 2 
) - 2/(x^2*log(x) + x*log(x) - 2*x - 2))
 
3.20.66.9 Mupad [B] (verification not implemented)

Time = 12.90 (sec) , antiderivative size = 97, normalized size of antiderivative = 4.04 \[ \int \frac {e^{\frac {2+8 x+2 x^2+\left (x+2 x^2+x^3\right ) \log \left (\frac {1}{x}\right )}{2+2 x+\left (x+x^2\right ) \log \left (\frac {1}{x}\right )}} \left (12+12 x+8 x^2+\left (4 x+4 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )\right )}{4+8 x+4 x^2+\left (4 x+8 x^2+4 x^3\right ) \log \left (\frac {1}{x}\right )+\left (x^2+2 x^3+x^4\right ) \log ^2\left (\frac {1}{x}\right )} \, dx={\mathrm {e}}^{\frac {8\,x}{2\,x+x\,\ln \left (\frac {1}{x}\right )+x^2\,\ln \left (\frac {1}{x}\right )+2}}\,{\mathrm {e}}^{\frac {2\,x^2}{2\,x+x\,\ln \left (\frac {1}{x}\right )+x^2\,\ln \left (\frac {1}{x}\right )+2}}\,{\mathrm {e}}^{\frac {2}{2\,x+x\,\ln \left (\frac {1}{x}\right )+x^2\,\ln \left (\frac {1}{x}\right )+2}}\,{\left (\frac {1}{x}\right )}^{\frac {x^2+x}{x\,\ln \left (\frac {1}{x}\right )+2}} \]

input
int((exp((8*x + log(1/x)*(x + 2*x^2 + x^3) + 2*x^2 + 2)/(2*x + log(1/x)*(x 
 + x^2) + 2))*(12*x + log(1/x)*(4*x + 4*x^2 + 4*x^3) + log(1/x)^2*(x^2 + 2 
*x^3 + x^4) + 8*x^2 + 12))/(8*x + log(1/x)*(4*x + 8*x^2 + 4*x^3) + log(1/x 
)^2*(x^2 + 2*x^3 + x^4) + 4*x^2 + 4),x)
 
output
exp((8*x)/(2*x + x*log(1/x) + x^2*log(1/x) + 2))*exp((2*x^2)/(2*x + x*log( 
1/x) + x^2*log(1/x) + 2))*exp(2/(2*x + x*log(1/x) + x^2*log(1/x) + 2))*(1/ 
x)^((x + x^2)/(x*log(1/x) + 2))