3.23.4 \(\int \frac {e^{\frac {50 x+25 e^{5+x} x}{25-15 x+16 x^2}} (1250-800 x^2+e^{5+x} (625+625 x-775 x^2+400 x^3))}{625-750 x+1025 x^2-480 x^3+256 x^4} \, dx\) [2204]

3.23.4.1 Optimal result
3.23.4.2 Mathematica [A] (verified)
3.23.4.3 Rubi [F]
3.23.4.4 Maple [A] (verified)
3.23.4.5 Fricas [A] (verification not implemented)
3.23.4.6 Sympy [A] (verification not implemented)
3.23.4.7 Maxima [A] (verification not implemented)
3.23.4.8 Giac [A] (verification not implemented)
3.23.4.9 Mupad [B] (verification not implemented)

3.23.4.1 Optimal result

Integrand size = 78, antiderivative size = 27 \[ \int \frac {e^{\frac {50 x+25 e^{5+x} x}{25-15 x+16 x^2}} \left (1250-800 x^2+e^{5+x} \left (625+625 x-775 x^2+400 x^3\right )\right )}{625-750 x+1025 x^2-480 x^3+256 x^4} \, dx=e^{\frac {2 x+e^{5+x} x}{\left (-1+\frac {4 x}{5}\right )^2+x}} \]

output
exp((2*x+x*exp(5+x))/((4/5*x-1)^2+x))
 
3.23.4.2 Mathematica [A] (verified)

Time = 2.97 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.89 \[ \int \frac {e^{\frac {50 x+25 e^{5+x} x}{25-15 x+16 x^2}} \left (1250-800 x^2+e^{5+x} \left (625+625 x-775 x^2+400 x^3\right )\right )}{625-750 x+1025 x^2-480 x^3+256 x^4} \, dx=e^{\frac {25 \left (2+e^{5+x}\right ) x}{25-15 x+16 x^2}} \]

input
Integrate[(E^((50*x + 25*E^(5 + x)*x)/(25 - 15*x + 16*x^2))*(1250 - 800*x^ 
2 + E^(5 + x)*(625 + 625*x - 775*x^2 + 400*x^3)))/(625 - 750*x + 1025*x^2 
- 480*x^3 + 256*x^4),x]
 
output
E^((25*(2 + E^(5 + x))*x)/(25 - 15*x + 16*x^2))
 
3.23.4.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\frac {25 e^{x+5} x+50 x}{16 x^2-15 x+25}} \left (-800 x^2+e^{x+5} \left (400 x^3-775 x^2+625 x+625\right )+1250\right )}{256 x^4-480 x^3+1025 x^2-750 x+625} \, dx\)

\(\Big \downarrow \) 2463

\(\displaystyle \int \left (\frac {1024 i e^{\frac {25 e^{x+5} x+50 x}{16 x^2-15 x+25}} \left (-800 x^2+e^{x+5} \left (400 x^3-775 x^2+625 x+625\right )+1250\right )}{6875 \sqrt {55} \left (-32 x+5 i \sqrt {55}+15\right )}+\frac {1024 i e^{\frac {25 e^{x+5} x+50 x}{16 x^2-15 x+25}} \left (-800 x^2+e^{x+5} \left (400 x^3-775 x^2+625 x+625\right )+1250\right )}{6875 \sqrt {55} \left (32 x+5 i \sqrt {55}-15\right )}-\frac {1024 e^{\frac {25 e^{x+5} x+50 x}{16 x^2-15 x+25}} \left (-800 x^2+e^{x+5} \left (400 x^3-775 x^2+625 x+625\right )+1250\right )}{1375 \left (-32 x+5 i \sqrt {55}+15\right )^2}-\frac {1024 e^{\frac {25 e^{x+5} x+50 x}{16 x^2-15 x+25}} \left (-800 x^2+e^{x+5} \left (400 x^3-775 x^2+625 x+625\right )+1250\right )}{1375 \left (32 x+5 i \sqrt {55}-15\right )^2}\right )dx\)

\(\Big \downarrow \) 7239

\(\displaystyle \int \frac {25 e^{\frac {25 \left (e^{x+5}+2\right ) x}{16 x^2-15 x+25}} \left (-32 x^2+e^{x+5} \left (16 x^3-31 x^2+25 x+25\right )+50\right )}{\left (16 x^2-15 x+25\right )^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle 25 \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}} \left (-32 x^2+e^{x+5} \left (16 x^3-31 x^2+25 x+25\right )+50\right )}{\left (16 x^2-15 x+25\right )^2}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle 25 \int \left (\frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}+x+5} \left (16 x^3-31 x^2+25 x+25\right )}{\left (16 x^2-15 x+25\right )^2}-\frac {2 e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}} \left (16 x^2-25\right )}{\left (16 x^2-15 x+25\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 25 \left (\frac {192}{55} \left (3+i \sqrt {55}\right ) \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}}}{\left (-32 x+5 i \sqrt {55}+15\right )^2}dx-\frac {4096}{55} \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}}}{\left (-32 x+5 i \sqrt {55}+15\right )^2}dx+\frac {96}{55} \left (3+i \sqrt {55}\right ) \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}+x+5}}{\left (-32 x+5 i \sqrt {55}+15\right )^2}dx-\frac {2048}{55} \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}+x+5}}{\left (-32 x+5 i \sqrt {55}+15\right )^2}dx+\frac {32 i \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}+x+5}}{-32 x+5 i \sqrt {55}+15}dx}{5 \sqrt {55}}+\frac {1}{275} \left (275+17 i \sqrt {55}\right ) \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}+x+5}}{32 x-5 i \sqrt {55}-15}dx+\frac {192}{55} \left (3-i \sqrt {55}\right ) \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}}}{\left (32 x+5 i \sqrt {55}-15\right )^2}dx-\frac {4096}{55} \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}}}{\left (32 x+5 i \sqrt {55}-15\right )^2}dx+\frac {96}{55} \left (3-i \sqrt {55}\right ) \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}+x+5}}{\left (32 x+5 i \sqrt {55}-15\right )^2}dx-\frac {2048}{55} \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}+x+5}}{\left (32 x+5 i \sqrt {55}-15\right )^2}dx+\frac {1}{275} \left (275-17 i \sqrt {55}\right ) \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}+x+5}}{32 x+5 i \sqrt {55}-15}dx+\frac {32 i \int \frac {e^{\frac {25 \left (2+e^{x+5}\right ) x}{16 x^2-15 x+25}+x+5}}{32 x+5 i \sqrt {55}-15}dx}{5 \sqrt {55}}\right )\)

input
Int[(E^((50*x + 25*E^(5 + x)*x)/(25 - 15*x + 16*x^2))*(1250 - 800*x^2 + E^ 
(5 + x)*(625 + 625*x - 775*x^2 + 400*x^3)))/(625 - 750*x + 1025*x^2 - 480* 
x^3 + 256*x^4),x]
 
output
$Aborted
 

3.23.4.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2463
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px]}, Int[ExpandIntegr 
and[u, Qx^p, x], x] /;  !SumQ[NonfreeFactors[Qx, x]]] /; PolyQ[Px, x] && Gt 
Q[Expon[Px, x], 2] &&  !BinomialQ[Px, x] &&  !TrinomialQ[Px, x] && ILtQ[p, 
0]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.23.4.4 Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.85

method result size
risch \({\mathrm e}^{\frac {25 x \left ({\mathrm e}^{5+x}+2\right )}{16 x^{2}-15 x +25}}\) \(23\)
parallelrisch \({\mathrm e}^{\frac {25 x \,{\mathrm e}^{5+x}+50 x}{16 x^{2}-15 x +25}}\) \(26\)
norman \(\frac {-15 x \,{\mathrm e}^{\frac {25 x \,{\mathrm e}^{5+x}+50 x}{16 x^{2}-15 x +25}}+16 x^{2} {\mathrm e}^{\frac {25 x \,{\mathrm e}^{5+x}+50 x}{16 x^{2}-15 x +25}}+25 \,{\mathrm e}^{\frac {25 x \,{\mathrm e}^{5+x}+50 x}{16 x^{2}-15 x +25}}}{16 x^{2}-15 x +25}\) \(100\)

input
int(((400*x^3-775*x^2+625*x+625)*exp(5+x)-800*x^2+1250)*exp((25*x*exp(5+x) 
+50*x)/(16*x^2-15*x+25))/(256*x^4-480*x^3+1025*x^2-750*x+625),x,method=_RE 
TURNVERBOSE)
 
output
exp(25*x*(exp(5+x)+2)/(16*x^2-15*x+25))
 
3.23.4.5 Fricas [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.93 \[ \int \frac {e^{\frac {50 x+25 e^{5+x} x}{25-15 x+16 x^2}} \left (1250-800 x^2+e^{5+x} \left (625+625 x-775 x^2+400 x^3\right )\right )}{625-750 x+1025 x^2-480 x^3+256 x^4} \, dx=e^{\left (\frac {25 \, {\left (x e^{\left (x + 5\right )} + 2 \, x\right )}}{16 \, x^{2} - 15 \, x + 25}\right )} \]

input
integrate(((400*x^3-775*x^2+625*x+625)*exp(5+x)-800*x^2+1250)*exp((25*x*ex 
p(5+x)+50*x)/(16*x^2-15*x+25))/(256*x^4-480*x^3+1025*x^2-750*x+625),x, alg 
orithm=\
 
output
e^(25*(x*e^(x + 5) + 2*x)/(16*x^2 - 15*x + 25))
 
3.23.4.6 Sympy [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.81 \[ \int \frac {e^{\frac {50 x+25 e^{5+x} x}{25-15 x+16 x^2}} \left (1250-800 x^2+e^{5+x} \left (625+625 x-775 x^2+400 x^3\right )\right )}{625-750 x+1025 x^2-480 x^3+256 x^4} \, dx=e^{\frac {25 x e^{x + 5} + 50 x}{16 x^{2} - 15 x + 25}} \]

input
integrate(((400*x**3-775*x**2+625*x+625)*exp(5+x)-800*x**2+1250)*exp((25*x 
*exp(5+x)+50*x)/(16*x**2-15*x+25))/(256*x**4-480*x**3+1025*x**2-750*x+625) 
,x)
 
output
exp((25*x*exp(x + 5) + 50*x)/(16*x**2 - 15*x + 25))
 
3.23.4.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.33 \[ \int \frac {e^{\frac {50 x+25 e^{5+x} x}{25-15 x+16 x^2}} \left (1250-800 x^2+e^{5+x} \left (625+625 x-775 x^2+400 x^3\right )\right )}{625-750 x+1025 x^2-480 x^3+256 x^4} \, dx=e^{\left (\frac {25 \, x e^{\left (x + 5\right )}}{16 \, x^{2} - 15 \, x + 25} + \frac {50 \, x}{16 \, x^{2} - 15 \, x + 25}\right )} \]

input
integrate(((400*x^3-775*x^2+625*x+625)*exp(5+x)-800*x^2+1250)*exp((25*x*ex 
p(5+x)+50*x)/(16*x^2-15*x+25))/(256*x^4-480*x^3+1025*x^2-750*x+625),x, alg 
orithm=\
 
output
e^(25*x*e^(x + 5)/(16*x^2 - 15*x + 25) + 50*x/(16*x^2 - 15*x + 25))
 
3.23.4.8 Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.33 \[ \int \frac {e^{\frac {50 x+25 e^{5+x} x}{25-15 x+16 x^2}} \left (1250-800 x^2+e^{5+x} \left (625+625 x-775 x^2+400 x^3\right )\right )}{625-750 x+1025 x^2-480 x^3+256 x^4} \, dx=e^{\left (\frac {25 \, x e^{\left (x + 5\right )}}{16 \, x^{2} - 15 \, x + 25} + \frac {50 \, x}{16 \, x^{2} - 15 \, x + 25}\right )} \]

input
integrate(((400*x^3-775*x^2+625*x+625)*exp(5+x)-800*x^2+1250)*exp((25*x*ex 
p(5+x)+50*x)/(16*x^2-15*x+25))/(256*x^4-480*x^3+1025*x^2-750*x+625),x, alg 
orithm=\
 
output
e^(25*x*e^(x + 5)/(16*x^2 - 15*x + 25) + 50*x/(16*x^2 - 15*x + 25))
 
3.23.4.9 Mupad [B] (verification not implemented)

Time = 13.25 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.93 \[ \int \frac {e^{\frac {50 x+25 e^{5+x} x}{25-15 x+16 x^2}} \left (1250-800 x^2+e^{5+x} \left (625+625 x-775 x^2+400 x^3\right )\right )}{625-750 x+1025 x^2-480 x^3+256 x^4} \, dx={\mathrm {e}}^{\frac {50\,x+25\,x\,{\mathrm {e}}^5\,{\mathrm {e}}^x}{16\,x^2-15\,x+25}} \]

input
int((exp((50*x + 25*x*exp(x + 5))/(16*x^2 - 15*x + 25))*(exp(x + 5)*(625*x 
 - 775*x^2 + 400*x^3 + 625) - 800*x^2 + 1250))/(1025*x^2 - 750*x - 480*x^3 
 + 256*x^4 + 625),x)
 
output
exp((50*x + 25*x*exp(5)*exp(x))/(16*x^2 - 15*x + 25))