3.7.31 \(\int \frac {-x \log (2)+e^{e^{\frac {-4+x^4 \log (2)}{x \log (2)}}} (-5 x \log (2)+e^{\frac {-4+x^4 \log (2)}{x \log (2)}} (20+15 x^4 \log (2)))}{5 x^3 \log (2)} \, dx\) [631]

3.7.31.1 Optimal result
3.7.31.2 Mathematica [F]
3.7.31.3 Rubi [F]
3.7.31.4 Maple [A] (verified)
3.7.31.5 Fricas [A] (verification not implemented)
3.7.31.6 Sympy [A] (verification not implemented)
3.7.31.7 Maxima [F]
3.7.31.8 Giac [F]
3.7.31.9 Mupad [B] (verification not implemented)

3.7.31.1 Optimal result

Integrand size = 72, antiderivative size = 29 \[ \int \frac {-x \log (2)+e^{e^{\frac {-4+x^4 \log (2)}{x \log (2)}}} \left (-5 x \log (2)+e^{\frac {-4+x^4 \log (2)}{x \log (2)}} \left (20+15 x^4 \log (2)\right )\right )}{5 x^3 \log (2)} \, dx=\frac {1}{5 x}+\frac {e^{e^{x^3-\frac {4}{x \log (2)}}}}{x} \]

output
exp(exp(x^3-4/x/ln(2)))/x+1/5/x
 
3.7.31.2 Mathematica [F]

\[ \int \frac {-x \log (2)+e^{e^{\frac {-4+x^4 \log (2)}{x \log (2)}}} \left (-5 x \log (2)+e^{\frac {-4+x^4 \log (2)}{x \log (2)}} \left (20+15 x^4 \log (2)\right )\right )}{5 x^3 \log (2)} \, dx=\int \frac {-x \log (2)+e^{e^{\frac {-4+x^4 \log (2)}{x \log (2)}}} \left (-5 x \log (2)+e^{\frac {-4+x^4 \log (2)}{x \log (2)}} \left (20+15 x^4 \log (2)\right )\right )}{5 x^3 \log (2)} \, dx \]

input
Integrate[(-(x*Log[2]) + E^E^((-4 + x^4*Log[2])/(x*Log[2]))*(-5*x*Log[2] + 
 E^((-4 + x^4*Log[2])/(x*Log[2]))*(20 + 15*x^4*Log[2])))/(5*x^3*Log[2]),x]
 
output
Integrate[(-(x*Log[2]) + E^E^((-4 + x^4*Log[2])/(x*Log[2]))*(-5*x*Log[2] + 
 E^((-4 + x^4*Log[2])/(x*Log[2]))*(20 + 15*x^4*Log[2])))/x^3, x]/(5*Log[2] 
)
 
3.7.31.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{e^{\frac {x^4 \log (2)-4}{x \log (2)}}} \left (e^{\frac {x^4 \log (2)-4}{x \log (2)}} \left (15 x^4 \log (2)+20\right )-5 x \log (2)\right )-x \log (2)}{5 x^3 \log (2)} \, dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int -\frac {\log (2) x+5 e^{2^{\frac {x^3}{\log (2)}} e^{-\frac {4}{x \log (2)}}} \left (x \log (2)-2^{\frac {x^3}{\log (2)}} e^{-\frac {4}{x \log (2)}} \left (3 \log (2) x^4+4\right )\right )}{x^3}dx}{5 \log (2)}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\log (2) x+5 e^{2^{\frac {x^3}{\log (2)}} e^{-\frac {4}{x \log (2)}}} \left (x \log (2)-2^{\frac {x^3}{\log (2)}} e^{-\frac {4}{x \log (2)}} \left (3 \log (2) x^4+4\right )\right )}{x^3}dx}{5 \log (2)}\)

\(\Big \downarrow \) 2010

\(\displaystyle -\frac {\int \left (\frac {\log (2)+e^{e^{x^3-\frac {4}{x \log (2)}}} \log (32)}{x^2}-\frac {5 e^{x^3+e^{x^3-\frac {4}{x \log (2)}}-\frac {4}{\log (2) x}} \left (\log (8) x^4+4\right )}{x^3}\right )dx}{5 \log (2)}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {-20 \int \frac {e^{x^3+e^{x^3-\frac {4}{x \log (2)}}-\frac {4}{\log (2) x}}}{x^3}dx-5 \log (8) \int e^{x^3+e^{x^3-\frac {4}{x \log (2)}}-\frac {4}{\log (2) x}} xdx+\log (32) \int \frac {e^{e^{\frac {x^4-\frac {4}{\log (2)}}{x}}}}{x^2}dx-\frac {\log (2)}{x}}{5 \log (2)}\)

input
Int[(-(x*Log[2]) + E^E^((-4 + x^4*Log[2])/(x*Log[2]))*(-5*x*Log[2] + E^((- 
4 + x^4*Log[2])/(x*Log[2]))*(20 + 15*x^4*Log[2])))/(5*x^3*Log[2]),x]
 
output
$Aborted
 

3.7.31.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2010
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x] 
, x] /; FreeQ[{c, m}, x] && SumQ[u] &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) 
+ (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
 
3.7.31.4 Maple [A] (verified)

Time = 1.24 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.00

method result size
norman \(\frac {x \,{\mathrm e}^{{\mathrm e}^{\frac {x^{4} \ln \left (2\right )-4}{x \ln \left (2\right )}}}+\frac {x}{5}}{x^{2}}\) \(29\)
risch \(\frac {1}{5 x}+\frac {{\mathrm e}^{{\mathrm e}^{\frac {x^{4} \ln \left (2\right )-4}{x \ln \left (2\right )}}}}{x}\) \(29\)
parallelrisch \(\frac {5 \ln \left (2\right ) {\mathrm e}^{{\mathrm e}^{\frac {x^{4} \ln \left (2\right )-4}{x \ln \left (2\right )}}}+\ln \left (2\right )}{5 \ln \left (2\right ) x}\) \(35\)

input
int(1/5*(((15*x^4*ln(2)+20)*exp((x^4*ln(2)-4)/x/ln(2))-5*x*ln(2))*exp(exp( 
(x^4*ln(2)-4)/x/ln(2)))-x*ln(2))/x^3/ln(2),x,method=_RETURNVERBOSE)
 
output
(x*exp(exp((x^4*ln(2)-4)/x/ln(2)))+1/5*x)/x^2
 
3.7.31.5 Fricas [A] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.93 \[ \int \frac {-x \log (2)+e^{e^{\frac {-4+x^4 \log (2)}{x \log (2)}}} \left (-5 x \log (2)+e^{\frac {-4+x^4 \log (2)}{x \log (2)}} \left (20+15 x^4 \log (2)\right )\right )}{5 x^3 \log (2)} \, dx=\frac {5 \, e^{\left (e^{\left (\frac {x^{4} \log \left (2\right ) - 4}{x \log \left (2\right )}\right )}\right )} + 1}{5 \, x} \]

input
integrate(1/5*(((15*x^4*log(2)+20)*exp((x^4*log(2)-4)/x/log(2))-5*x*log(2) 
)*exp(exp((x^4*log(2)-4)/x/log(2)))-x*log(2))/x^3/log(2),x, algorithm=\
 
output
1/5*(5*e^(e^((x^4*log(2) - 4)/(x*log(2)))) + 1)/x
 
3.7.31.6 Sympy [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.76 \[ \int \frac {-x \log (2)+e^{e^{\frac {-4+x^4 \log (2)}{x \log (2)}}} \left (-5 x \log (2)+e^{\frac {-4+x^4 \log (2)}{x \log (2)}} \left (20+15 x^4 \log (2)\right )\right )}{5 x^3 \log (2)} \, dx=\frac {e^{e^{\frac {x^{4} \log {\left (2 \right )} - 4}{x \log {\left (2 \right )}}}}}{x} + \frac {1}{5 x} \]

input
integrate(1/5*(((15*x**4*ln(2)+20)*exp((x**4*ln(2)-4)/x/ln(2))-5*x*ln(2))* 
exp(exp((x**4*ln(2)-4)/x/ln(2)))-x*ln(2))/x**3/ln(2),x)
 
output
exp(exp((x**4*log(2) - 4)/(x*log(2))))/x + 1/(5*x)
 
3.7.31.7 Maxima [F]

\[ \int \frac {-x \log (2)+e^{e^{\frac {-4+x^4 \log (2)}{x \log (2)}}} \left (-5 x \log (2)+e^{\frac {-4+x^4 \log (2)}{x \log (2)}} \left (20+15 x^4 \log (2)\right )\right )}{5 x^3 \log (2)} \, dx=\int { \frac {5 \, {\left ({\left (3 \, x^{4} \log \left (2\right ) + 4\right )} e^{\left (\frac {x^{4} \log \left (2\right ) - 4}{x \log \left (2\right )}\right )} - x \log \left (2\right )\right )} e^{\left (e^{\left (\frac {x^{4} \log \left (2\right ) - 4}{x \log \left (2\right )}\right )}\right )} - x \log \left (2\right )}{5 \, x^{3} \log \left (2\right )} \,d x } \]

input
integrate(1/5*(((15*x^4*log(2)+20)*exp((x^4*log(2)-4)/x/log(2))-5*x*log(2) 
)*exp(exp((x^4*log(2)-4)/x/log(2)))-x*log(2))/x^3/log(2),x, algorithm=\
 
output
1/5*(log(2)/x - integrate(5*(x*e^(4/(x*log(2)))*log(2) - (3*x^4*log(2) + 4 
)*e^(x^3))*e^(-4/(x*log(2)) + e^(x^3 - 4/(x*log(2))))/x^3, x))/log(2)
 
3.7.31.8 Giac [F]

\[ \int \frac {-x \log (2)+e^{e^{\frac {-4+x^4 \log (2)}{x \log (2)}}} \left (-5 x \log (2)+e^{\frac {-4+x^4 \log (2)}{x \log (2)}} \left (20+15 x^4 \log (2)\right )\right )}{5 x^3 \log (2)} \, dx=\int { \frac {5 \, {\left ({\left (3 \, x^{4} \log \left (2\right ) + 4\right )} e^{\left (\frac {x^{4} \log \left (2\right ) - 4}{x \log \left (2\right )}\right )} - x \log \left (2\right )\right )} e^{\left (e^{\left (\frac {x^{4} \log \left (2\right ) - 4}{x \log \left (2\right )}\right )}\right )} - x \log \left (2\right )}{5 \, x^{3} \log \left (2\right )} \,d x } \]

input
integrate(1/5*(((15*x^4*log(2)+20)*exp((x^4*log(2)-4)/x/log(2))-5*x*log(2) 
)*exp(exp((x^4*log(2)-4)/x/log(2)))-x*log(2))/x^3/log(2),x, algorithm=\
 
output
undef
 
3.7.31.9 Mupad [B] (verification not implemented)

Time = 11.62 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.76 \[ \int \frac {-x \log (2)+e^{e^{\frac {-4+x^4 \log (2)}{x \log (2)}}} \left (-5 x \log (2)+e^{\frac {-4+x^4 \log (2)}{x \log (2)}} \left (20+15 x^4 \log (2)\right )\right )}{5 x^3 \log (2)} \, dx=\frac {{\mathrm {e}}^{{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{-\frac {4}{x\,\ln \left (2\right )}}}+\frac {1}{5}}{x} \]

input
int(-((x*log(2))/5 + (exp(exp((x^4*log(2) - 4)/(x*log(2))))*(5*x*log(2) - 
exp((x^4*log(2) - 4)/(x*log(2)))*(15*x^4*log(2) + 20)))/5)/(x^3*log(2)),x)
 
output
(exp(exp(x^3)*exp(-4/(x*log(2)))) + 1/5)/x