3.12.63 \(\int \frac {-500 x^3+500 x^3 \log (x)+(500 x-500 x^2) \log ^2(x)+(-500 x+750 x^2) \log ^3(x)+128000 e^{2 e^{256 x^2}+256 x^2} x \log ^5(x)+(-250+250 x) \log ^5(x)+e^{e^{256 x^2}} (-500 x \log ^2(x)+(500 x+128000 e^{256 x^2} x^3) \log ^3(x)+(250+e^{256 x^2} (-128000 x+128000 x^2)) \log ^5(x))}{\log ^5(x)} \, dx\) [1163]

3.12.63.1 Optimal result
3.12.63.2 Mathematica [B] (verified)
3.12.63.3 Rubi [F]
3.12.63.4 Maple [B] (verified)
3.12.63.5 Fricas [B] (verification not implemented)
3.12.63.6 Sympy [B] (verification not implemented)
3.12.63.7 Maxima [B] (verification not implemented)
3.12.63.8 Giac [F]
3.12.63.9 Mupad [B] (verification not implemented)

3.12.63.1 Optimal result

Integrand size = 143, antiderivative size = 27 \begin {dmath*} \int \frac {-500 x^3+500 x^3 \log (x)+\left (500 x-500 x^2\right ) \log ^2(x)+\left (-500 x+750 x^2\right ) \log ^3(x)+128000 e^{2 e^{256 x^2}+256 x^2} x \log ^5(x)+(-250+250 x) \log ^5(x)+e^{e^{256 x^2}} \left (-500 x \log ^2(x)+\left (500 x+128000 e^{256 x^2} x^3\right ) \log ^3(x)+\left (250+e^{256 x^2} \left (-128000 x+128000 x^2\right )\right ) \log ^5(x)\right )}{\log ^5(x)} \, dx=5 \left (5-5 \left (e^{e^{256 x^2}}+x+\frac {x^2}{\log ^2(x)}\right )\right )^2 \end {dmath*}

output
5*(5-5*exp(exp(256*x^2))-5*x-5*x^2/ln(x)^2)^2
 
3.12.63.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(62\) vs. \(2(27)=54\).

Time = 0.74 (sec) , antiderivative size = 62, normalized size of antiderivative = 2.30 \begin {dmath*} \int \frac {-500 x^3+500 x^3 \log (x)+\left (500 x-500 x^2\right ) \log ^2(x)+\left (-500 x+750 x^2\right ) \log ^3(x)+128000 e^{2 e^{256 x^2}+256 x^2} x \log ^5(x)+(-250+250 x) \log ^5(x)+e^{e^{256 x^2}} \left (-500 x \log ^2(x)+\left (500 x+128000 e^{256 x^2} x^3\right ) \log ^3(x)+\left (250+e^{256 x^2} \left (-128000 x+128000 x^2\right )\right ) \log ^5(x)\right )}{\log ^5(x)} \, dx=125 \left (e^{2 e^{256 x^2}}+2 e^{e^{256 x^2}} (-1+x)+(-2+x) x+\frac {x^4}{\log ^4(x)}+\frac {2 x^2 \left (-1+e^{e^{256 x^2}}+x\right )}{\log ^2(x)}\right ) \end {dmath*}

input
Integrate[(-500*x^3 + 500*x^3*Log[x] + (500*x - 500*x^2)*Log[x]^2 + (-500* 
x + 750*x^2)*Log[x]^3 + 128000*E^(2*E^(256*x^2) + 256*x^2)*x*Log[x]^5 + (- 
250 + 250*x)*Log[x]^5 + E^E^(256*x^2)*(-500*x*Log[x]^2 + (500*x + 128000*E 
^(256*x^2)*x^3)*Log[x]^3 + (250 + E^(256*x^2)*(-128000*x + 128000*x^2))*Lo 
g[x]^5))/Log[x]^5,x]
 
output
125*(E^(2*E^(256*x^2)) + 2*E^E^(256*x^2)*(-1 + x) + (-2 + x)*x + x^4/Log[x 
]^4 + (2*x^2*(-1 + E^E^(256*x^2) + x))/Log[x]^2)
 
3.12.63.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-500 x^3+500 x^3 \log (x)+128000 e^{256 x^2+2 e^{256 x^2}} x \log ^5(x)+\left (750 x^2-500 x\right ) \log ^3(x)+\left (500 x-500 x^2\right ) \log ^2(x)+e^{e^{256 x^2}} \left (\left (e^{256 x^2} \left (128000 x^2-128000 x\right )+250\right ) \log ^5(x)+\left (128000 e^{256 x^2} x^3+500 x\right ) \log ^3(x)-500 x \log ^2(x)\right )+(250 x-250) \log ^5(x)}{\log ^5(x)} \, dx\)

\(\Big \downarrow \) 7239

\(\displaystyle \int \frac {250 \left (x^2+\left (e^{e^{256 x^2}}+x-1\right ) \log ^2(x)\right ) \left (\left (512 e^{256 x^2+e^{256 x^2}} x+1\right ) \log ^3(x)-2 x+2 x \log (x)\right )}{\log ^5(x)}dx\)

\(\Big \downarrow \) 27

\(\displaystyle 250 \int -\frac {\left (x^2-\left (-x-e^{e^{256 x^2}}+1\right ) \log ^2(x)\right ) \left (-\left (\left (512 e^{256 x^2+e^{256 x^2}} x+1\right ) \log ^3(x)\right )-2 x \log (x)+2 x\right )}{\log ^5(x)}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -250 \int \frac {\left (x^2-\left (-x-e^{e^{256 x^2}}+1\right ) \log ^2(x)\right ) \left (-\left (\left (512 e^{256 x^2+e^{256 x^2}} x+1\right ) \log ^3(x)\right )-2 x \log (x)+2 x\right )}{\log ^5(x)}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle -250 \int \left (-\frac {\left (\log ^3(x)+2 x \log (x)-2 x\right ) \left (x^2+\log ^2(x) x+e^{e^{256 x^2}} \log ^2(x)-\log ^2(x)\right )}{\log ^5(x)}-\frac {512 e^{256 x^2+e^{256 x^2}} x \left (x^2+\log ^2(x) x+e^{e^{256 x^2}} \log ^2(x)-\log ^2(x)\right )}{\log ^2(x)}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -250 \left (-\int e^{e^{256 x^2}}dx-512 \int e^{256 x^2+e^{256 x^2}} x^2dx+2 \int \frac {e^{e^{256 x^2}} x}{\log ^3(x)}dx-2 \int \frac {e^{e^{256 x^2}} x}{\log ^2(x)}dx-512 \int \frac {e^{256 x^2+e^{256 x^2}} x^3}{\log ^2(x)}dx-\frac {x^4}{2 \log ^4(x)}-\frac {x^3}{\log ^2(x)}-\frac {x^2}{2}+e^{e^{256 x^2}}-\frac {1}{2} e^{2 e^{256 x^2}}+\frac {x^2}{\log ^2(x)}+x\right )\)

input
Int[(-500*x^3 + 500*x^3*Log[x] + (500*x - 500*x^2)*Log[x]^2 + (-500*x + 75 
0*x^2)*Log[x]^3 + 128000*E^(2*E^(256*x^2) + 256*x^2)*x*Log[x]^5 + (-250 + 
250*x)*Log[x]^5 + E^E^(256*x^2)*(-500*x*Log[x]^2 + (500*x + 128000*E^(256* 
x^2)*x^3)*Log[x]^3 + (250 + E^(256*x^2)*(-128000*x + 128000*x^2))*Log[x]^5 
))/Log[x]^5,x]
 
output
$Aborted
 

3.12.63.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.12.63.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(75\) vs. \(2(27)=54\).

Time = 1.90 (sec) , antiderivative size = 76, normalized size of antiderivative = 2.81

method result size
risch \(125 x^{2}-250 x +\frac {125 x^{2} \left (2 x \ln \left (x \right )^{2}+x^{2}-2 \ln \left (x \right )^{2}\right )}{\ln \left (x \right )^{4}}+125 \,{\mathrm e}^{2 \,{\mathrm e}^{256 x^{2}}}+\frac {250 \left (x \ln \left (x \right )^{2}+x^{2}-\ln \left (x \right )^{2}\right ) {\mathrm e}^{{\mathrm e}^{256 x^{2}}}}{\ln \left (x \right )^{2}}\) \(76\)
parallelrisch \(-\frac {-125 x^{2} \ln \left (x \right )^{4}-250 \ln \left (x \right )^{4} {\mathrm e}^{{\mathrm e}^{256 x^{2}}} x -125 \,{\mathrm e}^{2 \,{\mathrm e}^{256 x^{2}}} \ln \left (x \right )^{4}-250 x^{3} \ln \left (x \right )^{2}-250 \ln \left (x \right )^{2} {\mathrm e}^{{\mathrm e}^{256 x^{2}}} x^{2}+250 x \ln \left (x \right )^{4}+250 \ln \left (x \right )^{4} {\mathrm e}^{{\mathrm e}^{256 x^{2}}}-125 x^{4}+250 x^{2} \ln \left (x \right )^{2}}{\ln \left (x \right )^{4}}\) \(105\)

input
int((128000*x*exp(256*x^2)*ln(x)^5*exp(exp(256*x^2))^2+(((128000*x^2-12800 
0*x)*exp(256*x^2)+250)*ln(x)^5+(128000*x^3*exp(256*x^2)+500*x)*ln(x)^3-500 
*x*ln(x)^2)*exp(exp(256*x^2))+(250*x-250)*ln(x)^5+(750*x^2-500*x)*ln(x)^3+ 
(-500*x^2+500*x)*ln(x)^2+500*x^3*ln(x)-500*x^3)/ln(x)^5,x,method=_RETURNVE 
RBOSE)
 
output
125*x^2-250*x+125*x^2*(2*x*ln(x)^2+x^2-2*ln(x)^2)/ln(x)^4+125*exp(2*exp(25 
6*x^2))+250*(x*ln(x)^2+x^2-ln(x)^2)/ln(x)^2*exp(exp(256*x^2))
 
3.12.63.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 77 vs. \(2 (22) = 44\).

Time = 0.30 (sec) , antiderivative size = 77, normalized size of antiderivative = 2.85 \begin {dmath*} \int \frac {-500 x^3+500 x^3 \log (x)+\left (500 x-500 x^2\right ) \log ^2(x)+\left (-500 x+750 x^2\right ) \log ^3(x)+128000 e^{2 e^{256 x^2}+256 x^2} x \log ^5(x)+(-250+250 x) \log ^5(x)+e^{e^{256 x^2}} \left (-500 x \log ^2(x)+\left (500 x+128000 e^{256 x^2} x^3\right ) \log ^3(x)+\left (250+e^{256 x^2} \left (-128000 x+128000 x^2\right )\right ) \log ^5(x)\right )}{\log ^5(x)} \, dx=\frac {125 \, {\left ({\left (x^{2} - 2 \, x\right )} \log \left (x\right )^{4} + e^{\left (2 \, e^{\left (256 \, x^{2}\right )}\right )} \log \left (x\right )^{4} + x^{4} + 2 \, {\left (x^{3} - x^{2}\right )} \log \left (x\right )^{2} + 2 \, {\left ({\left (x - 1\right )} \log \left (x\right )^{4} + x^{2} \log \left (x\right )^{2}\right )} e^{\left (e^{\left (256 \, x^{2}\right )}\right )}\right )}}{\log \left (x\right )^{4}} \end {dmath*}

input
integrate((128000*x*exp(256*x^2)*log(x)^5*exp(exp(256*x^2))^2+(((128000*x^ 
2-128000*x)*exp(256*x^2)+250)*log(x)^5+(128000*x^3*exp(256*x^2)+500*x)*log 
(x)^3-500*x*log(x)^2)*exp(exp(256*x^2))+(250*x-250)*log(x)^5+(750*x^2-500* 
x)*log(x)^3+(-500*x^2+500*x)*log(x)^2+500*x^3*log(x)-500*x^3)/log(x)^5,x, 
algorithm=\
 
output
125*((x^2 - 2*x)*log(x)^4 + e^(2*e^(256*x^2))*log(x)^4 + x^4 + 2*(x^3 - x^ 
2)*log(x)^2 + 2*((x - 1)*log(x)^4 + x^2*log(x)^2)*e^(e^(256*x^2)))/log(x)^ 
4
 
3.12.63.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 83 vs. \(2 (27) = 54\).

Time = 0.20 (sec) , antiderivative size = 83, normalized size of antiderivative = 3.07 \begin {dmath*} \int \frac {-500 x^3+500 x^3 \log (x)+\left (500 x-500 x^2\right ) \log ^2(x)+\left (-500 x+750 x^2\right ) \log ^3(x)+128000 e^{2 e^{256 x^2}+256 x^2} x \log ^5(x)+(-250+250 x) \log ^5(x)+e^{e^{256 x^2}} \left (-500 x \log ^2(x)+\left (500 x+128000 e^{256 x^2} x^3\right ) \log ^3(x)+\left (250+e^{256 x^2} \left (-128000 x+128000 x^2\right )\right ) \log ^5(x)\right )}{\log ^5(x)} \, dx=125 x^{2} - 250 x + \frac {125 x^{4} + \left (250 x^{3} - 250 x^{2}\right ) \log {\left (x \right )}^{2}}{\log {\left (x \right )}^{4}} + \frac {\left (250 x^{2} + 250 x \log {\left (x \right )}^{2} - 250 \log {\left (x \right )}^{2}\right ) e^{e^{256 x^{2}}} + 125 e^{2 e^{256 x^{2}}} \log {\left (x \right )}^{2}}{\log {\left (x \right )}^{2}} \end {dmath*}

input
integrate((128000*x*exp(256*x**2)*ln(x)**5*exp(exp(256*x**2))**2+(((128000 
*x**2-128000*x)*exp(256*x**2)+250)*ln(x)**5+(128000*x**3*exp(256*x**2)+500 
*x)*ln(x)**3-500*x*ln(x)**2)*exp(exp(256*x**2))+(250*x-250)*ln(x)**5+(750* 
x**2-500*x)*ln(x)**3+(-500*x**2+500*x)*ln(x)**2+500*x**3*ln(x)-500*x**3)/l 
n(x)**5,x)
 
output
125*x**2 - 250*x + (125*x**4 + (250*x**3 - 250*x**2)*log(x)**2)/log(x)**4 
+ ((250*x**2 + 250*x*log(x)**2 - 250*log(x)**2)*exp(exp(256*x**2)) + 125*e 
xp(2*exp(256*x**2))*log(x)**2)/log(x)**2
 
3.12.63.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 74 vs. \(2 (22) = 44\).

Time = 0.23 (sec) , antiderivative size = 74, normalized size of antiderivative = 2.74 \begin {dmath*} \int \frac {-500 x^3+500 x^3 \log (x)+\left (500 x-500 x^2\right ) \log ^2(x)+\left (-500 x+750 x^2\right ) \log ^3(x)+128000 e^{2 e^{256 x^2}+256 x^2} x \log ^5(x)+(-250+250 x) \log ^5(x)+e^{e^{256 x^2}} \left (-500 x \log ^2(x)+\left (500 x+128000 e^{256 x^2} x^3\right ) \log ^3(x)+\left (250+e^{256 x^2} \left (-128000 x+128000 x^2\right )\right ) \log ^5(x)\right )}{\log ^5(x)} \, dx=125 \, x^{2} - 250 \, x + \frac {125 \, {\left (e^{\left (2 \, e^{\left (256 \, x^{2}\right )}\right )} \log \left (x\right )^{4} + x^{4} + 2 \, {\left (x^{3} - x^{2}\right )} \log \left (x\right )^{2} + 2 \, {\left ({\left (x - 1\right )} \log \left (x\right )^{4} + x^{2} \log \left (x\right )^{2}\right )} e^{\left (e^{\left (256 \, x^{2}\right )}\right )}\right )}}{\log \left (x\right )^{4}} \end {dmath*}

input
integrate((128000*x*exp(256*x^2)*log(x)^5*exp(exp(256*x^2))^2+(((128000*x^ 
2-128000*x)*exp(256*x^2)+250)*log(x)^5+(128000*x^3*exp(256*x^2)+500*x)*log 
(x)^3-500*x*log(x)^2)*exp(exp(256*x^2))+(250*x-250)*log(x)^5+(750*x^2-500* 
x)*log(x)^3+(-500*x^2+500*x)*log(x)^2+500*x^3*log(x)-500*x^3)/log(x)^5,x, 
algorithm=\
 
output
125*x^2 - 250*x + 125*(e^(2*e^(256*x^2))*log(x)^4 + x^4 + 2*(x^3 - x^2)*lo 
g(x)^2 + 2*((x - 1)*log(x)^4 + x^2*log(x)^2)*e^(e^(256*x^2)))/log(x)^4
 
3.12.63.8 Giac [F]

\begin {dmath*} \int \frac {-500 x^3+500 x^3 \log (x)+\left (500 x-500 x^2\right ) \log ^2(x)+\left (-500 x+750 x^2\right ) \log ^3(x)+128000 e^{2 e^{256 x^2}+256 x^2} x \log ^5(x)+(-250+250 x) \log ^5(x)+e^{e^{256 x^2}} \left (-500 x \log ^2(x)+\left (500 x+128000 e^{256 x^2} x^3\right ) \log ^3(x)+\left (250+e^{256 x^2} \left (-128000 x+128000 x^2\right )\right ) \log ^5(x)\right )}{\log ^5(x)} \, dx=\int { \frac {250 \, {\left (512 \, x e^{\left (256 \, x^{2} + 2 \, e^{\left (256 \, x^{2}\right )}\right )} \log \left (x\right )^{5} + {\left (x - 1\right )} \log \left (x\right )^{5} + 2 \, x^{3} \log \left (x\right ) + {\left (3 \, x^{2} - 2 \, x\right )} \log \left (x\right )^{3} - 2 \, x^{3} - 2 \, {\left (x^{2} - x\right )} \log \left (x\right )^{2} + {\left ({\left (512 \, {\left (x^{2} - x\right )} e^{\left (256 \, x^{2}\right )} + 1\right )} \log \left (x\right )^{5} + 2 \, {\left (256 \, x^{3} e^{\left (256 \, x^{2}\right )} + x\right )} \log \left (x\right )^{3} - 2 \, x \log \left (x\right )^{2}\right )} e^{\left (e^{\left (256 \, x^{2}\right )}\right )}\right )}}{\log \left (x\right )^{5}} \,d x } \end {dmath*}

input
integrate((128000*x*exp(256*x^2)*log(x)^5*exp(exp(256*x^2))^2+(((128000*x^ 
2-128000*x)*exp(256*x^2)+250)*log(x)^5+(128000*x^3*exp(256*x^2)+500*x)*log 
(x)^3-500*x*log(x)^2)*exp(exp(256*x^2))+(250*x-250)*log(x)^5+(750*x^2-500* 
x)*log(x)^3+(-500*x^2+500*x)*log(x)^2+500*x^3*log(x)-500*x^3)/log(x)^5,x, 
algorithm=\
 
output
integrate(250*(512*x*e^(256*x^2 + 2*e^(256*x^2))*log(x)^5 + (x - 1)*log(x) 
^5 + 2*x^3*log(x) + (3*x^2 - 2*x)*log(x)^3 - 2*x^3 - 2*(x^2 - x)*log(x)^2 
+ ((512*(x^2 - x)*e^(256*x^2) + 1)*log(x)^5 + 2*(256*x^3*e^(256*x^2) + x)* 
log(x)^3 - 2*x*log(x)^2)*e^(e^(256*x^2)))/log(x)^5, x)
 
3.12.63.9 Mupad [B] (verification not implemented)

Time = 14.79 (sec) , antiderivative size = 82, normalized size of antiderivative = 3.04 \begin {dmath*} \int \frac {-500 x^3+500 x^3 \log (x)+\left (500 x-500 x^2\right ) \log ^2(x)+\left (-500 x+750 x^2\right ) \log ^3(x)+128000 e^{2 e^{256 x^2}+256 x^2} x \log ^5(x)+(-250+250 x) \log ^5(x)+e^{e^{256 x^2}} \left (-500 x \log ^2(x)+\left (500 x+128000 e^{256 x^2} x^3\right ) \log ^3(x)+\left (250+e^{256 x^2} \left (-128000 x+128000 x^2\right )\right ) \log ^5(x)\right )}{\log ^5(x)} \, dx=125\,{\mathrm {e}}^{2\,{\mathrm {e}}^{256\,x^2}}-250\,{\mathrm {e}}^{{\mathrm {e}}^{256\,x^2}}-250\,x-\frac {250\,x^2}{{\ln \left (x\right )}^2}+\frac {250\,x^3}{{\ln \left (x\right )}^2}+\frac {125\,x^4}{{\ln \left (x\right )}^4}+125\,x^2+250\,x\,{\mathrm {e}}^{{\mathrm {e}}^{256\,x^2}}+\frac {250\,x^2\,{\mathrm {e}}^{{\mathrm {e}}^{256\,x^2}}}{{\ln \left (x\right )}^2} \end {dmath*}

input
int((log(x)^2*(500*x - 500*x^2) - log(x)^3*(500*x - 750*x^2) + 500*x^3*log 
(x) - 500*x^3 + log(x)^5*(250*x - 250) - exp(exp(256*x^2))*(500*x*log(x)^2 
 + log(x)^5*(exp(256*x^2)*(128000*x - 128000*x^2) - 250) - log(x)^3*(500*x 
 + 128000*x^3*exp(256*x^2))) + 128000*x*exp(2*exp(256*x^2))*exp(256*x^2)*l 
og(x)^5)/log(x)^5,x)
 
output
125*exp(2*exp(256*x^2)) - 250*exp(exp(256*x^2)) - 250*x - (250*x^2)/log(x) 
^2 + (250*x^3)/log(x)^2 + (125*x^4)/log(x)^4 + 125*x^2 + 250*x*exp(exp(256 
*x^2)) + (250*x^2*exp(exp(256*x^2)))/log(x)^2