3.1.93 \(\int \frac {3 e^{1+16 x^2}-2 x^2-64 x^4}{e^{1+16 x^2} x-2 x^3} \, dx\) [93]

3.1.93.1 Optimal result
3.1.93.2 Mathematica [A] (verified)
3.1.93.3 Rubi [F]
3.1.93.4 Maple [A] (verified)
3.1.93.5 Fricas [A] (verification not implemented)
3.1.93.6 Sympy [A] (verification not implemented)
3.1.93.7 Maxima [A] (verification not implemented)
3.1.93.8 Giac [A] (verification not implemented)
3.1.93.9 Mupad [B] (verification not implemented)

3.1.93.1 Optimal result

Integrand size = 42, antiderivative size = 26 \begin {dmath*} \int \frac {3 e^{1+16 x^2}-2 x^2-64 x^4}{e^{1+16 x^2} x-2 x^3} \, dx=\log \left (\frac {2 x^3}{3 \left (2-4 e^{-1-16 x^2} x^2\right )}\right ) \end {dmath*}

output
ln(2/3*x^3/(2-4*x^2/exp(16*x^2+1)))
 
3.1.93.2 Mathematica [A] (verified)

Time = 2.28 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.08 \begin {dmath*} \int \frac {3 e^{1+16 x^2}-2 x^2-64 x^4}{e^{1+16 x^2} x-2 x^3} \, dx=16 x^2+3 \log (x)-\log \left (e^{1+16 x^2}-2 x^2\right ) \end {dmath*}

input
Integrate[(3*E^(1 + 16*x^2) - 2*x^2 - 64*x^4)/(E^(1 + 16*x^2)*x - 2*x^3),x 
]
 
output
16*x^2 + 3*Log[x] - Log[E^(1 + 16*x^2) - 2*x^2]
 
3.1.93.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-64 x^4-2 x^2+3 e^{16 x^2+1}}{e^{16 x^2+1} x-2 x^3} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {3}{x}-\frac {4 x \left (16 x^2-1\right )}{e^{16 x^2+1}-2 x^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 \text {Subst}\left (\int \frac {1}{e^{16 x+1}-2 x}dx,x,x^2\right )-32 \text {Subst}\left (\int \frac {x}{e^{16 x+1}-2 x}dx,x,x^2\right )+3 \log (x)\)

input
Int[(3*E^(1 + 16*x^2) - 2*x^2 - 64*x^4)/(E^(1 + 16*x^2)*x - 2*x^3),x]
 
output
$Aborted
 

3.1.93.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.1.93.4 Maple [A] (verified)

Time = 0.09 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.08

method result size
parallelrisch \(16 x^{2}+3 \ln \left (x \right )-\ln \left (x^{2}-\frac {{\mathrm e}^{16 x^{2}+1}}{2}\right )\) \(28\)
risch \(3 \ln \left (x \right )+16 x^{2}+1-\ln \left (-2 x^{2}+{\mathrm e}^{16 x^{2}+1}\right )\) \(29\)
norman \(16 x^{2}+3 \ln \left (x \right )-\ln \left (2 x^{2}-{\mathrm e}^{16 x^{2}+1}\right )\) \(30\)

input
int((3*exp(16*x^2+1)-64*x^4-2*x^2)/(x*exp(16*x^2+1)-2*x^3),x,method=_RETUR 
NVERBOSE)
 
output
16*x^2+3*ln(x)-ln(x^2-1/2*exp(16*x^2+1))
 
3.1.93.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.04 \begin {dmath*} \int \frac {3 e^{1+16 x^2}-2 x^2-64 x^4}{e^{1+16 x^2} x-2 x^3} \, dx=16 \, x^{2} - \log \left (-2 \, x^{2} + e^{\left (16 \, x^{2} + 1\right )}\right ) + 3 \, \log \left (x\right ) \end {dmath*}

input
integrate((3*exp(16*x^2+1)-64*x^4-2*x^2)/(x*exp(16*x^2+1)-2*x^3),x, algori 
thm=\
 
output
16*x^2 - log(-2*x^2 + e^(16*x^2 + 1)) + 3*log(x)
 
3.1.93.6 Sympy [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.92 \begin {dmath*} \int \frac {3 e^{1+16 x^2}-2 x^2-64 x^4}{e^{1+16 x^2} x-2 x^3} \, dx=16 x^{2} + 3 \log {\left (x \right )} - \log {\left (- 2 x^{2} + e^{16 x^{2} + 1} \right )} \end {dmath*}

input
integrate((3*exp(16*x**2+1)-64*x**4-2*x**2)/(x*exp(16*x**2+1)-2*x**3),x)
 
output
16*x**2 + 3*log(x) - log(-2*x**2 + exp(16*x**2 + 1))
 
3.1.93.7 Maxima [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 33, normalized size of antiderivative = 1.27 \begin {dmath*} \int \frac {3 e^{1+16 x^2}-2 x^2-64 x^4}{e^{1+16 x^2} x-2 x^3} \, dx=16 \, x^{2} - \log \left (-{\left (2 \, x^{2} - e^{\left (16 \, x^{2} + 1\right )}\right )} e^{\left (-1\right )}\right ) + 3 \, \log \left (x\right ) \end {dmath*}

input
integrate((3*exp(16*x^2+1)-64*x^4-2*x^2)/(x*exp(16*x^2+1)-2*x^3),x, algori 
thm=\
 
output
16*x^2 - log(-(2*x^2 - e^(16*x^2 + 1))*e^(-1)) + 3*log(x)
 
3.1.93.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.31 \begin {dmath*} \int \frac {3 e^{1+16 x^2}-2 x^2-64 x^4}{e^{1+16 x^2} x-2 x^3} \, dx=16 \, x^{2} + \frac {3}{2} \, \log \left (16 \, x^{2}\right ) - \log \left (16 \, x^{2} - 8 \, e^{\left (16 \, x^{2} + 1\right )}\right ) + 1 \end {dmath*}

input
integrate((3*exp(16*x^2+1)-64*x^4-2*x^2)/(x*exp(16*x^2+1)-2*x^3),x, algori 
thm=\
 
output
16*x^2 + 3/2*log(16*x^2) - log(16*x^2 - 8*e^(16*x^2 + 1)) + 1
 
3.1.93.9 Mupad [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.12 \begin {dmath*} \int \frac {3 e^{1+16 x^2}-2 x^2-64 x^4}{e^{1+16 x^2} x-2 x^3} \, dx=3\,\ln \left (x\right )-\ln \left (2\,x^2-\mathrm {e}\,{\mathrm {e}}^{16\,x^2}\right )+16\,x^2 \end {dmath*}

input
int(-(2*x^2 - 3*exp(16*x^2 + 1) + 64*x^4)/(x*exp(16*x^2 + 1) - 2*x^3),x)
 
output
3*log(x) - log(2*x^2 - exp(1)*exp(16*x^2)) + 16*x^2