3.13.12 \(\int \frac {e^8+e^{2 x}+150 x^2-2 e^4 x^2+x^4+e^x (2 e^4-75 x-2 x^2)}{e^8 x+e^{2 x} x-2 e^4 x^3+x^5+e^x (2 e^4 x-2 x^3)} \, dx\) [1212]

3.13.12.1 Optimal result
3.13.12.2 Mathematica [A] (verified)
3.13.12.3 Rubi [F]
3.13.12.4 Maple [A] (verified)
3.13.12.5 Fricas [A] (verification not implemented)
3.13.12.6 Sympy [A] (verification not implemented)
3.13.12.7 Maxima [A] (verification not implemented)
3.13.12.8 Giac [A] (verification not implemented)
3.13.12.9 Mupad [B] (verification not implemented)

3.13.12.1 Optimal result

Integrand size = 86, antiderivative size = 28 \begin {dmath*} \int \frac {e^8+e^{2 x}+150 x^2-2 e^4 x^2+x^4+e^x \left (2 e^4-75 x-2 x^2\right )}{e^8 x+e^{2 x} x-2 e^4 x^3+x^5+e^x \left (2 e^4 x-2 x^3\right )} \, dx=4+\frac {75}{e^4+e^x-x^2}-\log (4)-\log \left (\frac {1}{x}\right ) \end {dmath*}

output
5/(1/15*exp(4)+1/15*exp(x)-1/15*x^2)-2*ln(2)+4-ln(1/x)
 
3.13.12.2 Mathematica [A] (verified)

Time = 2.02 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.68 \begin {dmath*} \int \frac {e^8+e^{2 x}+150 x^2-2 e^4 x^2+x^4+e^x \left (2 e^4-75 x-2 x^2\right )}{e^8 x+e^{2 x} x-2 e^4 x^3+x^5+e^x \left (2 e^4 x-2 x^3\right )} \, dx=\frac {75}{e^4+e^x-x^2}+\log (x) \end {dmath*}

input
Integrate[(E^8 + E^(2*x) + 150*x^2 - 2*E^4*x^2 + x^4 + E^x*(2*E^4 - 75*x - 
 2*x^2))/(E^8*x + E^(2*x)*x - 2*E^4*x^3 + x^5 + E^x*(2*E^4*x - 2*x^3)),x]
 
output
75/(E^4 + E^x - x^2) + Log[x]
 
3.13.12.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4-2 e^4 x^2+150 x^2+e^x \left (-2 x^2-75 x+2 e^4\right )+e^{2 x}+e^8}{x^5-2 e^4 x^3+e^x \left (2 e^4 x-2 x^3\right )+e^{2 x} x+e^8 x} \, dx\)

\(\Big \downarrow \) 6

\(\displaystyle \int \frac {x^4+\left (150-2 e^4\right ) x^2+e^x \left (-2 x^2-75 x+2 e^4\right )+e^{2 x}+e^8}{x^5-2 e^4 x^3+e^x \left (2 e^4 x-2 x^3\right )+e^{2 x} x+e^8 x}dx\)

\(\Big \downarrow \) 7292

\(\displaystyle \int \frac {x^4+\left (150-2 e^4\right ) x^2+e^x \left (-2 x^2-75 x+2 e^4\right )+e^{2 x}+e^8}{x \left (-x^2+e^x+e^4\right )^2}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {75 \left (-x^2+2 x+e^4\right )}{\left (-x^2+e^x+e^4\right )^2}-\frac {75}{-x^2+e^x+e^4}+\frac {1}{x}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 75 e^4 \int \frac {1}{\left (-x^2+e^x+e^4\right )^2}dx-75 \int \frac {1}{-x^2+e^x+e^4}dx+150 \int \frac {x}{\left (x^2-e^x-e^4\right )^2}dx-75 \int \frac {x^2}{\left (x^2-e^x-e^4\right )^2}dx+\log (x)\)

input
Int[(E^8 + E^(2*x) + 150*x^2 - 2*E^4*x^2 + x^4 + E^x*(2*E^4 - 75*x - 2*x^2 
))/(E^8*x + E^(2*x)*x - 2*E^4*x^3 + x^5 + E^x*(2*E^4*x - 2*x^3)),x]
 
output
$Aborted
 

3.13.12.3.1 Defintions of rubi rules used

rule 6
Int[(u_.)*((v_.) + (a_.)*(Fx_) + (b_.)*(Fx_))^(p_.), x_Symbol] :> Int[u*(v 
+ (a + b)*Fx)^p, x] /; FreeQ[{a, b}, x] &&  !FreeQ[Fx, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.13.12.4 Maple [A] (verified)

Time = 1.74 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.64

method result size
norman \(\frac {75}{-x^{2}+{\mathrm e}^{4}+{\mathrm e}^{x}}+\ln \left (x \right )\) \(18\)
risch \(\frac {75}{-x^{2}+{\mathrm e}^{4}+{\mathrm e}^{x}}+\ln \left (x \right )\) \(18\)
parallelrisch \(\frac {-x^{2} \ln \left (x \right )+{\mathrm e}^{4} \ln \left (x \right )+{\mathrm e}^{x} \ln \left (x \right )+75}{-x^{2}+{\mathrm e}^{4}+{\mathrm e}^{x}}\) \(33\)

input
int((exp(x)^2+(2*exp(4)-2*x^2-75*x)*exp(x)+exp(4)^2-2*x^2*exp(4)+x^4+150*x 
^2)/(x*exp(x)^2+(2*x*exp(4)-2*x^3)*exp(x)+x*exp(4)^2-2*x^3*exp(4)+x^5),x,m 
ethod=_RETURNVERBOSE)
 
output
75/(-x^2+exp(4)+exp(x))+ln(x)
 
3.13.12.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.14 \begin {dmath*} \int \frac {e^8+e^{2 x}+150 x^2-2 e^4 x^2+x^4+e^x \left (2 e^4-75 x-2 x^2\right )}{e^8 x+e^{2 x} x-2 e^4 x^3+x^5+e^x \left (2 e^4 x-2 x^3\right )} \, dx=\frac {{\left (x^{2} - e^{4} - e^{x}\right )} \log \left (x\right ) - 75}{x^{2} - e^{4} - e^{x}} \end {dmath*}

input
integrate((exp(x)^2+(2*exp(4)-2*x^2-75*x)*exp(x)+exp(4)^2-2*x^2*exp(4)+x^4 
+150*x^2)/(x*exp(x)^2+(2*x*exp(4)-2*x^3)*exp(x)+x*exp(4)^2-2*x^3*exp(4)+x^ 
5),x, algorithm=\
 
output
((x^2 - e^4 - e^x)*log(x) - 75)/(x^2 - e^4 - e^x)
 
3.13.12.6 Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.50 \begin {dmath*} \int \frac {e^8+e^{2 x}+150 x^2-2 e^4 x^2+x^4+e^x \left (2 e^4-75 x-2 x^2\right )}{e^8 x+e^{2 x} x-2 e^4 x^3+x^5+e^x \left (2 e^4 x-2 x^3\right )} \, dx=\log {\left (x \right )} + \frac {75}{- x^{2} + e^{x} + e^{4}} \end {dmath*}

input
integrate((exp(x)**2+(2*exp(4)-2*x**2-75*x)*exp(x)+exp(4)**2-2*x**2*exp(4) 
+x**4+150*x**2)/(x*exp(x)**2+(2*x*exp(4)-2*x**3)*exp(x)+x*exp(4)**2-2*x**3 
*exp(4)+x**5),x)
 
output
log(x) + 75/(-x**2 + exp(x) + exp(4))
 
3.13.12.7 Maxima [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.68 \begin {dmath*} \int \frac {e^8+e^{2 x}+150 x^2-2 e^4 x^2+x^4+e^x \left (2 e^4-75 x-2 x^2\right )}{e^8 x+e^{2 x} x-2 e^4 x^3+x^5+e^x \left (2 e^4 x-2 x^3\right )} \, dx=-\frac {75}{x^{2} - e^{4} - e^{x}} + \log \left (x\right ) \end {dmath*}

input
integrate((exp(x)^2+(2*exp(4)-2*x^2-75*x)*exp(x)+exp(4)^2-2*x^2*exp(4)+x^4 
+150*x^2)/(x*exp(x)^2+(2*x*exp(4)-2*x^3)*exp(x)+x*exp(4)^2-2*x^3*exp(4)+x^ 
5),x, algorithm=\
 
output
-75/(x^2 - e^4 - e^x) + log(x)
 
3.13.12.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.25 \begin {dmath*} \int \frac {e^8+e^{2 x}+150 x^2-2 e^4 x^2+x^4+e^x \left (2 e^4-75 x-2 x^2\right )}{e^8 x+e^{2 x} x-2 e^4 x^3+x^5+e^x \left (2 e^4 x-2 x^3\right )} \, dx=\frac {x^{2} \log \left (x\right ) - e^{4} \log \left (x\right ) - e^{x} \log \left (x\right ) - 75}{x^{2} - e^{4} - e^{x}} \end {dmath*}

input
integrate((exp(x)^2+(2*exp(4)-2*x^2-75*x)*exp(x)+exp(4)^2-2*x^2*exp(4)+x^4 
+150*x^2)/(x*exp(x)^2+(2*x*exp(4)-2*x^3)*exp(x)+x*exp(4)^2-2*x^3*exp(4)+x^ 
5),x, algorithm=\
 
output
(x^2*log(x) - e^4*log(x) - e^x*log(x) - 75)/(x^2 - e^4 - e^x)
 
3.13.12.9 Mupad [B] (verification not implemented)

Time = 14.97 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.61 \begin {dmath*} \int \frac {e^8+e^{2 x}+150 x^2-2 e^4 x^2+x^4+e^x \left (2 e^4-75 x-2 x^2\right )}{e^8 x+e^{2 x} x-2 e^4 x^3+x^5+e^x \left (2 e^4 x-2 x^3\right )} \, dx=\ln \left (x\right )+\frac {75}{{\mathrm {e}}^4+{\mathrm {e}}^x-x^2} \end {dmath*}

input
int((exp(2*x) + exp(8) - exp(x)*(75*x - 2*exp(4) + 2*x^2) - 2*x^2*exp(4) + 
 150*x^2 + x^4)/(exp(x)*(2*x*exp(4) - 2*x^3) + x*exp(2*x) + x*exp(8) - 2*x 
^3*exp(4) + x^5),x)
 
output
log(x) + 75/(exp(4) + exp(x) - x^2)