3.2.51 \(\int \frac {75-30 x-15 x^2+e^x (15+30 x+15 x^2)}{225+300 x+130 x^2+20 x^3+x^4+e^{2 x} (1+2 x+x^2)+e^x (-30-50 x-22 x^2-2 x^3)} \, dx\) [151]

3.2.51.1 Optimal result
3.2.51.2 Mathematica [A] (verified)
3.2.51.3 Rubi [F]
3.2.51.4 Maple [A] (verified)
3.2.51.5 Fricas [A] (verification not implemented)
3.2.51.6 Sympy [A] (verification not implemented)
3.2.51.7 Maxima [A] (verification not implemented)
3.2.51.8 Giac [A] (verification not implemented)
3.2.51.9 Mupad [B] (verification not implemented)

3.2.51.1 Optimal result

Integrand size = 78, antiderivative size = 19 \begin {dmath*} \int \frac {75-30 x-15 x^2+e^x \left (15+30 x+15 x^2\right )}{225+300 x+130 x^2+20 x^3+x^4+e^{2 x} \left (1+2 x+x^2\right )+e^x \left (-30-50 x-22 x^2-2 x^3\right )} \, dx=-\frac {15}{-9+e^x-x-\frac {6}{1+x}} \end {dmath*}

output
-15/(exp(x)-x-9-6/(1+x))
 
3.2.51.2 Mathematica [A] (verified)

Time = 1.21 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.21 \begin {dmath*} \int \frac {75-30 x-15 x^2+e^x \left (15+30 x+15 x^2\right )}{225+300 x+130 x^2+20 x^3+x^4+e^{2 x} \left (1+2 x+x^2\right )+e^x \left (-30-50 x-22 x^2-2 x^3\right )} \, dx=\frac {15 (1+x)}{15+10 x+x^2-e^x (1+x)} \end {dmath*}

input
Integrate[(75 - 30*x - 15*x^2 + E^x*(15 + 30*x + 15*x^2))/(225 + 300*x + 1 
30*x^2 + 20*x^3 + x^4 + E^(2*x)*(1 + 2*x + x^2) + E^x*(-30 - 50*x - 22*x^2 
 - 2*x^3)),x]
 
output
(15*(1 + x))/(15 + 10*x + x^2 - E^x*(1 + x))
 
3.2.51.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-15 x^2+e^x \left (15 x^2+30 x+15\right )-30 x+75}{x^4+20 x^3+130 x^2+e^{2 x} \left (x^2+2 x+1\right )+e^x \left (-2 x^3-22 x^2-50 x-30\right )+300 x+225} \, dx\)

\(\Big \downarrow \) 7239

\(\displaystyle \int \frac {15 \left (-x^2-2 x+e^x (x+1)^2+5\right )}{\left (x^2+10 x-e^x (x+1)+15\right )^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle 15 \int \frac {-x^2-2 x+e^x (x+1)^2+5}{\left (x^2+10 x-e^x (x+1)+15\right )^2}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle 15 \int \left (\frac {x^3+10 x^2+23 x+20}{\left (-x^2+e^x x-10 x+e^x-15\right )^2}-\frac {x+1}{x^2-e^x x+10 x-e^x+15}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 15 \left (20 \int \frac {1}{\left (-x^2+e^x x-10 x+e^x-15\right )^2}dx+\int \frac {1}{-x^2+e^x x-10 x+e^x-15}dx+23 \int \frac {x}{\left (x^2-e^x x+10 x-e^x+15\right )^2}dx+10 \int \frac {x^2}{\left (x^2-e^x x+10 x-e^x+15\right )^2}dx-\int \frac {x}{x^2-e^x x+10 x-e^x+15}dx+\int \frac {x^3}{\left (x^2-e^x x+10 x-e^x+15\right )^2}dx\right )\)

input
Int[(75 - 30*x - 15*x^2 + E^x*(15 + 30*x + 15*x^2))/(225 + 300*x + 130*x^2 
 + 20*x^3 + x^4 + E^(2*x)*(1 + 2*x + x^2) + E^x*(-30 - 50*x - 22*x^2 - 2*x 
^3)),x]
 
output
$Aborted
 

3.2.51.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.2.51.4 Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.32

method result size
risch \(\frac {15 x +15}{x^{2}-{\mathrm e}^{x} x +10 x -{\mathrm e}^{x}+15}\) \(25\)
norman \(\frac {15 x +15}{x^{2}-{\mathrm e}^{x} x +10 x -{\mathrm e}^{x}+15}\) \(26\)
parallelrisch \(-\frac {-15 x -15}{x^{2}-{\mathrm e}^{x} x +10 x -{\mathrm e}^{x}+15}\) \(27\)

input
int(((15*x^2+30*x+15)*exp(x)-15*x^2-30*x+75)/((x^2+2*x+1)*exp(x)^2+(-2*x^3 
-22*x^2-50*x-30)*exp(x)+x^4+20*x^3+130*x^2+300*x+225),x,method=_RETURNVERB 
OSE)
 
output
15*(1+x)/(x^2-exp(x)*x+10*x-exp(x)+15)
 
3.2.51.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.16 \begin {dmath*} \int \frac {75-30 x-15 x^2+e^x \left (15+30 x+15 x^2\right )}{225+300 x+130 x^2+20 x^3+x^4+e^{2 x} \left (1+2 x+x^2\right )+e^x \left (-30-50 x-22 x^2-2 x^3\right )} \, dx=\frac {15 \, {\left (x + 1\right )}}{x^{2} - {\left (x + 1\right )} e^{x} + 10 \, x + 15} \end {dmath*}

input
integrate(((15*x^2+30*x+15)*exp(x)-15*x^2-30*x+75)/((x^2+2*x+1)*exp(x)^2+( 
-2*x^3-22*x^2-50*x-30)*exp(x)+x^4+20*x^3+130*x^2+300*x+225),x, algorithm=\
 
output
15*(x + 1)/(x^2 - (x + 1)*e^x + 10*x + 15)
 
3.2.51.6 Sympy [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.05 \begin {dmath*} \int \frac {75-30 x-15 x^2+e^x \left (15+30 x+15 x^2\right )}{225+300 x+130 x^2+20 x^3+x^4+e^{2 x} \left (1+2 x+x^2\right )+e^x \left (-30-50 x-22 x^2-2 x^3\right )} \, dx=\frac {- 15 x - 15}{- x^{2} - 10 x + \left (x + 1\right ) e^{x} - 15} \end {dmath*}

input
integrate(((15*x**2+30*x+15)*exp(x)-15*x**2-30*x+75)/((x**2+2*x+1)*exp(x)* 
*2+(-2*x**3-22*x**2-50*x-30)*exp(x)+x**4+20*x**3+130*x**2+300*x+225),x)
 
output
(-15*x - 15)/(-x**2 - 10*x + (x + 1)*exp(x) - 15)
 
3.2.51.7 Maxima [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.16 \begin {dmath*} \int \frac {75-30 x-15 x^2+e^x \left (15+30 x+15 x^2\right )}{225+300 x+130 x^2+20 x^3+x^4+e^{2 x} \left (1+2 x+x^2\right )+e^x \left (-30-50 x-22 x^2-2 x^3\right )} \, dx=\frac {15 \, {\left (x + 1\right )}}{x^{2} - {\left (x + 1\right )} e^{x} + 10 \, x + 15} \end {dmath*}

input
integrate(((15*x^2+30*x+15)*exp(x)-15*x^2-30*x+75)/((x^2+2*x+1)*exp(x)^2+( 
-2*x^3-22*x^2-50*x-30)*exp(x)+x^4+20*x^3+130*x^2+300*x+225),x, algorithm=\
 
output
15*(x + 1)/(x^2 - (x + 1)*e^x + 10*x + 15)
 
3.2.51.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.26 \begin {dmath*} \int \frac {75-30 x-15 x^2+e^x \left (15+30 x+15 x^2\right )}{225+300 x+130 x^2+20 x^3+x^4+e^{2 x} \left (1+2 x+x^2\right )+e^x \left (-30-50 x-22 x^2-2 x^3\right )} \, dx=\frac {15 \, {\left (x + 1\right )}}{x^{2} - x e^{x} + 10 \, x - e^{x} + 15} \end {dmath*}

input
integrate(((15*x^2+30*x+15)*exp(x)-15*x^2-30*x+75)/((x^2+2*x+1)*exp(x)^2+( 
-2*x^3-22*x^2-50*x-30)*exp(x)+x^4+20*x^3+130*x^2+300*x+225),x, algorithm=\
 
output
15*(x + 1)/(x^2 - x*e^x + 10*x - e^x + 15)
 
3.2.51.9 Mupad [B] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.26 \begin {dmath*} \int \frac {75-30 x-15 x^2+e^x \left (15+30 x+15 x^2\right )}{225+300 x+130 x^2+20 x^3+x^4+e^{2 x} \left (1+2 x+x^2\right )+e^x \left (-30-50 x-22 x^2-2 x^3\right )} \, dx=-\frac {15\,x+15}{{\mathrm {e}}^x+x\,\left ({\mathrm {e}}^x-10\right )-x^2-15} \end {dmath*}

input
int(-(30*x - exp(x)*(30*x + 15*x^2 + 15) + 15*x^2 - 75)/(300*x + exp(2*x)* 
(2*x + x^2 + 1) + 130*x^2 + 20*x^3 + x^4 - exp(x)*(50*x + 22*x^2 + 2*x^3 + 
 30) + 225),x)
 
output
-(15*x + 15)/(exp(x) + x*(exp(x) - 10) - x^2 - 15)