3.8.36 \(\int \frac {8}{-3+12 x+(-1+4 x) \log (4)+(-1+4 x) \log (\frac {1}{16} (1-8 x+16 x^2))} \, dx\) [736]

3.8.36.1 Optimal result
3.8.36.2 Mathematica [A] (verified)
3.8.36.3 Rubi [A] (verified)
3.8.36.4 Maple [A] (verified)
3.8.36.5 Fricas [A] (verification not implemented)
3.8.36.6 Sympy [A] (verification not implemented)
3.8.36.7 Maxima [A] (verification not implemented)
3.8.36.8 Giac [A] (verification not implemented)
3.8.36.9 Mupad [F(-1)]

3.8.36.1 Optimal result

Integrand size = 38, antiderivative size = 17 \begin {dmath*} \int \frac {8}{-3+12 x+(-1+4 x) \log (4)+(-1+4 x) \log \left (\frac {1}{16} \left (1-8 x+16 x^2\right )\right )} \, dx=\log \left (\frac {4}{3} \left (3+\log (4)+\log \left (\left (-\frac {1}{4}+x\right )^2\right )\right )\right ) \end {dmath*}

output
ln(4+8/3*ln(2)+4/3*ln((x-1/4)^2))
 
3.8.36.2 Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.88 \begin {dmath*} \int \frac {8}{-3+12 x+(-1+4 x) \log (4)+(-1+4 x) \log \left (\frac {1}{16} \left (1-8 x+16 x^2\right )\right )} \, dx=\log \left (3+\log \left (\frac {1}{4} (1-4 x)^2\right )\right ) \end {dmath*}

input
Integrate[8/(-3 + 12*x + (-1 + 4*x)*Log[4] + (-1 + 4*x)*Log[(1 - 8*x + 16* 
x^2)/16]),x]
 
output
Log[3 + Log[(1 - 4*x)^2/4]]
 
3.8.36.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.88, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {27, 7292, 2837, 25, 2739, 14}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {8}{(4 x-1) \log \left (\frac {1}{16} \left (16 x^2-8 x+1\right )\right )+12 x+(4 x-1) \log (4)-3} \, dx\)

\(\Big \downarrow \) 27

\(\displaystyle 8 \int \frac {1}{-\log \left (\frac {1}{16} \left (16 x^2-8 x+1\right )\right ) (1-4 x)-\log (4) (1-4 x)+12 x-3}dx\)

\(\Big \downarrow \) 7292

\(\displaystyle 8 \int \frac {1}{(4 x-1) \left (\log \left (\frac {1}{4} (1-4 x)^2\right )+3\right )}dx\)

\(\Big \downarrow \) 2837

\(\displaystyle -2 \int -\frac {1}{(1-4 x) \left (\log \left (\frac {1}{4} (1-4 x)^2\right )+3\right )}d(1-4 x)\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \int \frac {1}{(1-4 x) \left (\log \left (\frac {1}{4} (1-4 x)^2\right )+3\right )}d(1-4 x)\)

\(\Big \downarrow \) 2739

\(\displaystyle \int \frac {1}{\log \left (\frac {1}{4} (1-4 x)^2\right )+3}d\left (\log \left (\frac {1}{4} (1-4 x)^2\right )+3\right )\)

\(\Big \downarrow \) 14

\(\displaystyle \log \left (\log \left (\frac {1}{4} (1-4 x)^2\right )+3\right )\)

input
Int[8/(-3 + 12*x + (-1 + 4*x)*Log[4] + (-1 + 4*x)*Log[(1 - 8*x + 16*x^2)/1 
6]),x]
 
output
Log[3 + Log[(1 - 4*x)^2/4]]
 

3.8.36.3.1 Defintions of rubi rules used

rule 14
Int[(a_.)/(x_), x_Symbol] :> Simp[a*Log[x], x] /; FreeQ[a, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2739
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Simp[1/( 
b*n)   Subst[Int[x^p, x], x, a + b*Log[c*x^n]], x] /; FreeQ[{a, b, c, n, p} 
, x]
 

rule 2837
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_. 
)*(x_))^(q_.), x_Symbol] :> Simp[1/e   Subst[Int[(f*(x/d))^q*(a + b*Log[c*x 
^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x] && 
EqQ[e*f - d*g, 0]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 
3.8.36.4 Maple [A] (verified)

Time = 0.33 (sec) , antiderivative size = 17, normalized size of antiderivative = 1.00

method result size
norman \(\ln \left (2 \ln \left (2\right )+\ln \left (x^{2}-\frac {1}{2} x +\frac {1}{16}\right )+3\right )\) \(17\)
risch \(\ln \left (2 \ln \left (2\right )+\ln \left (x^{2}-\frac {1}{2} x +\frac {1}{16}\right )+3\right )\) \(17\)
parallelrisch \(\ln \left (2 \ln \left (2\right )+\ln \left (x^{2}-\frac {1}{2} x +\frac {1}{16}\right )+3\right )\) \(17\)
default \(\ln \left (2 \ln \left (2\right )-\ln \left (16 x^{2}-8 x +1\right )-3\right )\) \(21\)

input
int(8/((-1+4*x)*ln(x^2-1/2*x+1/16)+2*(-1+4*x)*ln(2)+12*x-3),x,method=_RETU 
RNVERBOSE)
 
output
ln(2*ln(2)+ln(x^2-1/2*x+1/16)+3)
 
3.8.36.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.94 \begin {dmath*} \int \frac {8}{-3+12 x+(-1+4 x) \log (4)+(-1+4 x) \log \left (\frac {1}{16} \left (1-8 x+16 x^2\right )\right )} \, dx=\log \left (2 \, \log \left (2\right ) + \log \left (x^{2} - \frac {1}{2} \, x + \frac {1}{16}\right ) + 3\right ) \end {dmath*}

input
integrate(8/((-1+4*x)*log(x^2-1/2*x+1/16)+2*(-1+4*x)*log(2)+12*x-3),x, alg 
orithm=\
 
output
log(2*log(2) + log(x^2 - 1/2*x + 1/16) + 3)
 
3.8.36.6 Sympy [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 19, normalized size of antiderivative = 1.12 \begin {dmath*} \int \frac {8}{-3+12 x+(-1+4 x) \log (4)+(-1+4 x) \log \left (\frac {1}{16} \left (1-8 x+16 x^2\right )\right )} \, dx=\log {\left (\log {\left (x^{2} - \frac {x}{2} + \frac {1}{16} \right )} + 2 \log {\left (2 \right )} + 3 \right )} \end {dmath*}

input
integrate(8/((-1+4*x)*ln(x**2-1/2*x+1/16)+2*(-1+4*x)*ln(2)+12*x-3),x)
 
output
log(log(x**2 - x/2 + 1/16) + 2*log(2) + 3)
 
3.8.36.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.76 \begin {dmath*} \int \frac {8}{-3+12 x+(-1+4 x) \log (4)+(-1+4 x) \log \left (\frac {1}{16} \left (1-8 x+16 x^2\right )\right )} \, dx=\log \left (-\log \left (2\right ) + \log \left (4 \, x - 1\right ) + \frac {3}{2}\right ) \end {dmath*}

input
integrate(8/((-1+4*x)*log(x^2-1/2*x+1/16)+2*(-1+4*x)*log(2)+12*x-3),x, alg 
orithm=\
 
output
log(-log(2) + log(4*x - 1) + 3/2)
 
3.8.36.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.06 \begin {dmath*} \int \frac {8}{-3+12 x+(-1+4 x) \log (4)+(-1+4 x) \log \left (\frac {1}{16} \left (1-8 x+16 x^2\right )\right )} \, dx=\log \left (-2 \, \log \left (2\right ) + \log \left (16 \, x^{2} - 8 \, x + 1\right ) + 3\right ) \end {dmath*}

input
integrate(8/((-1+4*x)*log(x^2-1/2*x+1/16)+2*(-1+4*x)*log(2)+12*x-3),x, alg 
orithm=\
 
output
log(-2*log(2) + log(16*x^2 - 8*x + 1) + 3)
 
3.8.36.9 Mupad [F(-1)]

Timed out. \begin {dmath*} \int \frac {8}{-3+12 x+(-1+4 x) \log (4)+(-1+4 x) \log \left (\frac {1}{16} \left (1-8 x+16 x^2\right )\right )} \, dx=\int \frac {8}{12\,x+2\,\ln \left (2\right )\,\left (4\,x-1\right )+\ln \left (x^2-\frac {x}{2}+\frac {1}{16}\right )\,\left (4\,x-1\right )-3} \,d x \end {dmath*}

input
int(8/(12*x + 2*log(2)*(4*x - 1) + log(x^2 - x/2 + 1/16)*(4*x - 1) - 3),x)
 
output
int(8/(12*x + 2*log(2)*(4*x - 1) + log(x^2 - x/2 + 1/16)*(4*x - 1) - 3), x 
)