3.6.41 \(\int \frac {x}{a+b f^{-c-d x}+c f^{c+d x}} \, dx\) [541]

3.6.41.1 Optimal result
3.6.41.2 Mathematica [A] (verified)
3.6.41.3 Rubi [A] (verified)
3.6.41.4 Maple [B] (verified)
3.6.41.5 Fricas [A] (verification not implemented)
3.6.41.6 Sympy [F]
3.6.41.7 Maxima [F(-2)]
3.6.41.8 Giac [F]
3.6.41.9 Mupad [F(-1)]

3.6.41.1 Optimal result

Integrand size = 27, antiderivative size = 203 \[ \int \frac {x}{a+b f^{-c-d x}+c f^{c+d x}} \, dx=\frac {x \log \left (1+\frac {2 c f^{c+d x}}{a-\sqrt {a^2-4 b c}}\right )}{\sqrt {a^2-4 b c} d \log (f)}-\frac {x \log \left (1+\frac {2 c f^{c+d x}}{a+\sqrt {a^2-4 b c}}\right )}{\sqrt {a^2-4 b c} d \log (f)}+\frac {\operatorname {PolyLog}\left (2,-\frac {2 c f^{c+d x}}{a-\sqrt {a^2-4 b c}}\right )}{\sqrt {a^2-4 b c} d^2 \log ^2(f)}-\frac {\operatorname {PolyLog}\left (2,-\frac {2 c f^{c+d x}}{a+\sqrt {a^2-4 b c}}\right )}{\sqrt {a^2-4 b c} d^2 \log ^2(f)} \]

output
x*ln(1+2*c*f^(d*x+c)/(a-(a^2-4*b*c)^(1/2)))/d/ln(f)/(a^2-4*b*c)^(1/2)-x*ln 
(1+2*c*f^(d*x+c)/(a+(a^2-4*b*c)^(1/2)))/d/ln(f)/(a^2-4*b*c)^(1/2)+polylog( 
2,-2*c*f^(d*x+c)/(a-(a^2-4*b*c)^(1/2)))/d^2/ln(f)^2/(a^2-4*b*c)^(1/2)-poly 
log(2,-2*c*f^(d*x+c)/(a+(a^2-4*b*c)^(1/2)))/d^2/ln(f)^2/(a^2-4*b*c)^(1/2)
 
3.6.41.2 Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.73 \[ \int \frac {x}{a+b f^{-c-d x}+c f^{c+d x}} \, dx=\frac {d x \log (f) \left (\log \left (1+\frac {2 c f^{c+d x}}{a-\sqrt {a^2-4 b c}}\right )-\log \left (1+\frac {2 c f^{c+d x}}{a+\sqrt {a^2-4 b c}}\right )\right )+\operatorname {PolyLog}\left (2,\frac {2 c f^{c+d x}}{-a+\sqrt {a^2-4 b c}}\right )-\operatorname {PolyLog}\left (2,-\frac {2 c f^{c+d x}}{a+\sqrt {a^2-4 b c}}\right )}{\sqrt {a^2-4 b c} d^2 \log ^2(f)} \]

input
Integrate[x/(a + b*f^(-c - d*x) + c*f^(c + d*x)),x]
 
output
(d*x*Log[f]*(Log[1 + (2*c*f^(c + d*x))/(a - Sqrt[a^2 - 4*b*c])] - Log[1 + 
(2*c*f^(c + d*x))/(a + Sqrt[a^2 - 4*b*c])]) + PolyLog[2, (2*c*f^(c + d*x)) 
/(-a + Sqrt[a^2 - 4*b*c])] - PolyLog[2, (-2*c*f^(c + d*x))/(a + Sqrt[a^2 - 
 4*b*c])])/(Sqrt[a^2 - 4*b*c]*d^2*Log[f]^2)
 
3.6.41.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {2697, 2694, 2620, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{a+b f^{-c-d x}+c f^{c+d x}} \, dx\)

\(\Big \downarrow \) 2697

\(\displaystyle \int \frac {x f^{c+d x}}{a f^{c+d x}+b+c f^{2 (c+d x)}}dx\)

\(\Big \downarrow \) 2694

\(\displaystyle \frac {2 c \int \frac {f^{c+d x} x}{2 c f^{c+d x}+a-\sqrt {a^2-4 b c}}dx}{\sqrt {a^2-4 b c}}-\frac {2 c \int \frac {f^{c+d x} x}{2 c f^{c+d x}+a+\sqrt {a^2-4 b c}}dx}{\sqrt {a^2-4 b c}}\)

\(\Big \downarrow \) 2620

\(\displaystyle \frac {2 c \left (\frac {x \log \left (\frac {2 c f^{c+d x}}{a-\sqrt {a^2-4 b c}}+1\right )}{2 c d \log (f)}-\frac {\int \log \left (\frac {2 c f^{c+d x}}{a-\sqrt {a^2-4 b c}}+1\right )dx}{2 c d \log (f)}\right )}{\sqrt {a^2-4 b c}}-\frac {2 c \left (\frac {x \log \left (\frac {2 c f^{c+d x}}{\sqrt {a^2-4 b c}+a}+1\right )}{2 c d \log (f)}-\frac {\int \log \left (\frac {2 c f^{c+d x}}{a+\sqrt {a^2-4 b c}}+1\right )dx}{2 c d \log (f)}\right )}{\sqrt {a^2-4 b c}}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {2 c \left (\frac {x \log \left (\frac {2 c f^{c+d x}}{a-\sqrt {a^2-4 b c}}+1\right )}{2 c d \log (f)}-\frac {\int f^{-c-d x} \log \left (\frac {2 c f^{c+d x}}{a-\sqrt {a^2-4 b c}}+1\right )df^{c+d x}}{2 c d^2 \log ^2(f)}\right )}{\sqrt {a^2-4 b c}}-\frac {2 c \left (\frac {x \log \left (\frac {2 c f^{c+d x}}{\sqrt {a^2-4 b c}+a}+1\right )}{2 c d \log (f)}-\frac {\int f^{-c-d x} \log \left (\frac {2 c f^{c+d x}}{a+\sqrt {a^2-4 b c}}+1\right )df^{c+d x}}{2 c d^2 \log ^2(f)}\right )}{\sqrt {a^2-4 b c}}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {2 c \left (\frac {\operatorname {PolyLog}\left (2,-\frac {2 c f^{c+d x}}{a-\sqrt {a^2-4 b c}}\right )}{2 c d^2 \log ^2(f)}+\frac {x \log \left (\frac {2 c f^{c+d x}}{a-\sqrt {a^2-4 b c}}+1\right )}{2 c d \log (f)}\right )}{\sqrt {a^2-4 b c}}-\frac {2 c \left (\frac {\operatorname {PolyLog}\left (2,-\frac {2 c f^{c+d x}}{a+\sqrt {a^2-4 b c}}\right )}{2 c d^2 \log ^2(f)}+\frac {x \log \left (\frac {2 c f^{c+d x}}{\sqrt {a^2-4 b c}+a}+1\right )}{2 c d \log (f)}\right )}{\sqrt {a^2-4 b c}}\)

input
Int[x/(a + b*f^(-c - d*x) + c*f^(c + d*x)),x]
 
output
(2*c*((x*Log[1 + (2*c*f^(c + d*x))/(a - Sqrt[a^2 - 4*b*c])])/(2*c*d*Log[f] 
) + PolyLog[2, (-2*c*f^(c + d*x))/(a - Sqrt[a^2 - 4*b*c])]/(2*c*d^2*Log[f] 
^2)))/Sqrt[a^2 - 4*b*c] - (2*c*((x*Log[1 + (2*c*f^(c + d*x))/(a + Sqrt[a^2 
 - 4*b*c])])/(2*c*d*Log[f]) + PolyLog[2, (-2*c*f^(c + d*x))/(a + Sqrt[a^2 
- 4*b*c])]/(2*c*d^2*Log[f]^2)))/Sqrt[a^2 - 4*b*c]
 

3.6.41.3.1 Defintions of rubi rules used

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2694
Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.) 
*(F_)^(v_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/q)   Int 
[(f + g*x)^m*(F^u/(b - q + 2*c*F^u)), x], x] - Simp[2*(c/q)   Int[(f + g*x) 
^m*(F^u/(b + q + 2*c*F^u)), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[ 
v, 2*u] && LinearQ[u, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[m, 0]
 

rule 2697
Int[(u_)/((a_) + (b_.)*(F_)^(v_) + (c_.)*(F_)^(w_)), x_Symbol] :> Int[u*(F^ 
v/(c + a*F^v + b*F^(2*v))), x] /; FreeQ[{F, a, b, c}, x] && EqQ[w, -v] && L 
inearQ[v, x] && If[RationalQ[D[v, x]], GtQ[D[v, x], 0], LtQ[LeafCount[v], L 
eafCount[w]]]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 
3.6.41.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(432\) vs. \(2(187)=374\).

Time = 0.09 (sec) , antiderivative size = 433, normalized size of antiderivative = 2.13

method result size
risch \(-\frac {\ln \left (\frac {-2 b \,f^{-d x} f^{-c}+\sqrt {a^{2}-4 c b}-a}{-a +\sqrt {a^{2}-4 c b}}\right ) x}{d \ln \left (f \right ) \sqrt {a^{2}-4 c b}}+\frac {\ln \left (\frac {2 b \,f^{-d x} f^{-c}+\sqrt {a^{2}-4 c b}+a}{a +\sqrt {a^{2}-4 c b}}\right ) x}{d \ln \left (f \right ) \sqrt {a^{2}-4 c b}}-\frac {\ln \left (\frac {-2 b \,f^{-d x} f^{-c}+\sqrt {a^{2}-4 c b}-a}{-a +\sqrt {a^{2}-4 c b}}\right ) c}{d^{2} \ln \left (f \right ) \sqrt {a^{2}-4 c b}}+\frac {\ln \left (\frac {2 b \,f^{-d x} f^{-c}+\sqrt {a^{2}-4 c b}+a}{a +\sqrt {a^{2}-4 c b}}\right ) c}{d^{2} \ln \left (f \right ) \sqrt {a^{2}-4 c b}}+\frac {\operatorname {dilog}\left (\frac {-2 b \,f^{-d x} f^{-c}+\sqrt {a^{2}-4 c b}-a}{-a +\sqrt {a^{2}-4 c b}}\right )}{d^{2} \ln \left (f \right )^{2} \sqrt {a^{2}-4 c b}}-\frac {\operatorname {dilog}\left (\frac {2 b \,f^{-d x} f^{-c}+\sqrt {a^{2}-4 c b}+a}{a +\sqrt {a^{2}-4 c b}}\right )}{d^{2} \ln \left (f \right )^{2} \sqrt {a^{2}-4 c b}}+\frac {2 c \arctan \left (\frac {2 b \,f^{-d x} f^{-c}+a}{\sqrt {-a^{2}+4 c b}}\right )}{d^{2} \ln \left (f \right ) \sqrt {-a^{2}+4 c b}}\) \(433\)

input
int(x/(a+b*f^(-d*x-c)+c*f^(d*x+c)),x,method=_RETURNVERBOSE)
 
output
-1/d/ln(f)/(a^2-4*b*c)^(1/2)*ln((-2*b*f^(-d*x)*f^(-c)+(a^2-4*b*c)^(1/2)-a) 
/(-a+(a^2-4*b*c)^(1/2)))*x+1/d/ln(f)/(a^2-4*b*c)^(1/2)*ln((2*b*f^(-d*x)*f^ 
(-c)+(a^2-4*b*c)^(1/2)+a)/(a+(a^2-4*b*c)^(1/2)))*x-1/d^2/ln(f)/(a^2-4*b*c) 
^(1/2)*ln((-2*b*f^(-d*x)*f^(-c)+(a^2-4*b*c)^(1/2)-a)/(-a+(a^2-4*b*c)^(1/2) 
))*c+1/d^2/ln(f)/(a^2-4*b*c)^(1/2)*ln((2*b*f^(-d*x)*f^(-c)+(a^2-4*b*c)^(1/ 
2)+a)/(a+(a^2-4*b*c)^(1/2)))*c+1/d^2/ln(f)^2/(a^2-4*b*c)^(1/2)*dilog((-2*b 
*f^(-d*x)*f^(-c)+(a^2-4*b*c)^(1/2)-a)/(-a+(a^2-4*b*c)^(1/2)))-1/d^2/ln(f)^ 
2/(a^2-4*b*c)^(1/2)*dilog((2*b*f^(-d*x)*f^(-c)+(a^2-4*b*c)^(1/2)+a)/(a+(a^ 
2-4*b*c)^(1/2)))+2/d^2/ln(f)*c/(-a^2+4*b*c)^(1/2)*arctan((2*b*f^(-d*x)*f^( 
-c)+a)/(-a^2+4*b*c)^(1/2))
 
3.6.41.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 353, normalized size of antiderivative = 1.74 \[ \int \frac {x}{a+b f^{-c-d x}+c f^{c+d x}} \, dx=\frac {b c \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} \log \left (2 \, c f^{d x + c} + b \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} + a\right ) \log \left (f\right ) - b c \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} \log \left (2 \, c f^{d x + c} - b \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} + a\right ) \log \left (f\right ) + {\left (b d x + b c\right )} \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} \log \left (f\right ) \log \left (\frac {{\left (b \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} + a\right )} f^{d x + c} + 2 \, b}{2 \, b}\right ) - {\left (b d x + b c\right )} \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} \log \left (f\right ) \log \left (-\frac {{\left (b \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} - a\right )} f^{d x + c} - 2 \, b}{2 \, b}\right ) + b \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} {\rm Li}_2\left (-\frac {{\left (b \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} + a\right )} f^{d x + c} + 2 \, b}{2 \, b} + 1\right ) - b \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} {\rm Li}_2\left (\frac {{\left (b \sqrt {\frac {a^{2} - 4 \, b c}{b^{2}}} - a\right )} f^{d x + c} - 2 \, b}{2 \, b} + 1\right )}{{\left (a^{2} - 4 \, b c\right )} d^{2} \log \left (f\right )^{2}} \]

input
integrate(x/(a+b*f^(-d*x-c)+c*f^(d*x+c)),x, algorithm="fricas")
 
output
(b*c*sqrt((a^2 - 4*b*c)/b^2)*log(2*c*f^(d*x + c) + b*sqrt((a^2 - 4*b*c)/b^ 
2) + a)*log(f) - b*c*sqrt((a^2 - 4*b*c)/b^2)*log(2*c*f^(d*x + c) - b*sqrt( 
(a^2 - 4*b*c)/b^2) + a)*log(f) + (b*d*x + b*c)*sqrt((a^2 - 4*b*c)/b^2)*log 
(f)*log(1/2*((b*sqrt((a^2 - 4*b*c)/b^2) + a)*f^(d*x + c) + 2*b)/b) - (b*d* 
x + b*c)*sqrt((a^2 - 4*b*c)/b^2)*log(f)*log(-1/2*((b*sqrt((a^2 - 4*b*c)/b^ 
2) - a)*f^(d*x + c) - 2*b)/b) + b*sqrt((a^2 - 4*b*c)/b^2)*dilog(-1/2*((b*s 
qrt((a^2 - 4*b*c)/b^2) + a)*f^(d*x + c) + 2*b)/b + 1) - b*sqrt((a^2 - 4*b* 
c)/b^2)*dilog(1/2*((b*sqrt((a^2 - 4*b*c)/b^2) - a)*f^(d*x + c) - 2*b)/b + 
1))/((a^2 - 4*b*c)*d^2*log(f)^2)
 
3.6.41.6 Sympy [F]

\[ \int \frac {x}{a+b f^{-c-d x}+c f^{c+d x}} \, dx=\int \frac {x}{a + b f^{- c - d x} + c f^{c + d x}}\, dx \]

input
integrate(x/(a+b*f**(-d*x-c)+c*f**(d*x+c)),x)
 
output
Integral(x/(a + b*f**(-c - d*x) + c*f**(c + d*x)), x)
 
3.6.41.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x}{a+b f^{-c-d x}+c f^{c+d x}} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x/(a+b*f^(-d*x-c)+c*f^(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a^2-4*b*c>0)', see `assume?` for 
 more deta
 
3.6.41.8 Giac [F]

\[ \int \frac {x}{a+b f^{-c-d x}+c f^{c+d x}} \, dx=\int { \frac {x}{c f^{d x + c} + b f^{-d x - c} + a} \,d x } \]

input
integrate(x/(a+b*f^(-d*x-c)+c*f^(d*x+c)),x, algorithm="giac")
 
output
integrate(x/(c*f^(d*x + c) + b*f^(-d*x - c) + a), x)
 
3.6.41.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x}{a+b f^{-c-d x}+c f^{c+d x}} \, dx=\int \frac {x}{a+c\,f^{c+d\,x}+\frac {b}{f^{c+d\,x}}} \,d x \]

input
int(x/(a + c*f^(c + d*x) + b/f^(c + d*x)),x)
 
output
int(x/(a + c*f^(c + d*x) + b/f^(c + d*x)), x)