3.2.10 \(\int \frac {\log (-1+4 x+4 \sqrt {(-1+x) x})}{\sqrt {x}} \, dx\) [110]

3.2.10.1 Optimal result
3.2.10.2 Mathematica [C] (verified)
3.2.10.3 Rubi [A] (verified)
3.2.10.4 Maple [F]
3.2.10.5 Fricas [A] (verification not implemented)
3.2.10.6 Sympy [F(-1)]
3.2.10.7 Maxima [F]
3.2.10.8 Giac [F]
3.2.10.9 Mupad [F(-1)]

3.2.10.1 Optimal result

Integrand size = 23, antiderivative size = 118 \[ \int \frac {\log \left (-1+4 x+4 \sqrt {(-1+x) x}\right )}{\sqrt {x}} \, dx=-2 \sqrt {x}-\frac {2 \sqrt {-x+x^2}}{\sqrt {x}}-\frac {\sqrt {-x+x^2} \arctan \left (\frac {2}{3} \sqrt {2} \sqrt {-1+x}\right )}{\sqrt {2} \sqrt {-1+x} \sqrt {x}}+\frac {\arctan \left (2 \sqrt {2} \sqrt {x}\right )}{\sqrt {2}}+2 \sqrt {x} \log \left (-1+4 x+4 \sqrt {-x+x^2}\right ) \]

output
1/2*arctan(2*2^(1/2)*x^(1/2))*2^(1/2)-2*x^(1/2)+2*ln(-1+4*x+4*(x^2-x)^(1/2 
))*x^(1/2)-2/x^(1/2)*(x^2-x)^(1/2)-1/2*arctan(2/3*2^(1/2)*(-1+x)^(1/2))*(x 
^2-x)^(1/2)*2^(1/2)/(-1+x)^(1/2)/x^(1/2)
 
3.2.10.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.55 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.46 \[ \int \frac {\log \left (-1+4 x+4 \sqrt {(-1+x) x}\right )}{\sqrt {x}} \, dx=\frac {\sqrt {2} \sqrt {(-1+x) x} \arctan \left (\frac {2 \sqrt {2}-i \sqrt {x}}{3 \sqrt {-1+x}}\right )+\sqrt {2} \sqrt {(-1+x) x} \arctan \left (\frac {2 \sqrt {2}+i \sqrt {x}}{3 \sqrt {-1+x}}\right )+2 \sqrt {-1+x} \left (\sqrt {2} \sqrt {x} \arctan \left (2 \sqrt {2} \sqrt {x}\right )-4 \left (x+\sqrt {(-1+x) x}-x \log \left (-1+4 x+4 \sqrt {(-1+x) x}\right )\right )\right )}{4 \sqrt {-1+x} \sqrt {x}} \]

input
Integrate[Log[-1 + 4*x + 4*Sqrt[(-1 + x)*x]]/Sqrt[x],x]
 
output
(Sqrt[2]*Sqrt[(-1 + x)*x]*ArcTan[(2*Sqrt[2] - I*Sqrt[x])/(3*Sqrt[-1 + x])] 
 + Sqrt[2]*Sqrt[(-1 + x)*x]*ArcTan[(2*Sqrt[2] + I*Sqrt[x])/(3*Sqrt[-1 + x] 
)] + 2*Sqrt[-1 + x]*(Sqrt[2]*Sqrt[x]*ArcTan[2*Sqrt[2]*Sqrt[x]] - 4*(x + Sq 
rt[(-1 + x)*x] - x*Log[-1 + 4*x + 4*Sqrt[(-1 + x)*x]])))/(4*Sqrt[-1 + x]*S 
qrt[x])
 
3.2.10.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.10, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3017, 3015, 27, 2035, 7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\log \left (4 x+4 \sqrt {(x-1) x}-1\right )}{\sqrt {x}} \, dx\)

\(\Big \downarrow \) 3017

\(\displaystyle \int \frac {\log \left (4 \sqrt {x^2-x}+4 x-1\right )}{\sqrt {x}}dx\)

\(\Big \downarrow \) 3015

\(\displaystyle 16 \int -\frac {\sqrt {x}}{4 \left (\sqrt {x^2-x} (2 x+1)+2 \left (x-x^2\right )\right )}dx+2 \sqrt {x} \log \left (4 \sqrt {x^2-x}+4 x-1\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \sqrt {x} \log \left (4 \sqrt {x^2-x}+4 x-1\right )-4 \int \frac {\sqrt {x}}{\sqrt {x^2-x} (2 x+1)+2 \left (x-x^2\right )}dx\)

\(\Big \downarrow \) 2035

\(\displaystyle 2 \sqrt {x} \log \left (4 \sqrt {x^2-x}+4 x-1\right )-8 \int \frac {x}{\sqrt {x^2-x} (2 x+1)+2 \left (x-x^2\right )}d\sqrt {x}\)

\(\Big \downarrow \) 7293

\(\displaystyle 2 \sqrt {x} \log \left (4 \sqrt {x^2-x}+4 x-1\right )-8 \int \left (\frac {x}{3 \sqrt {x^2-x}}+\frac {2 \sqrt {x^2-x}}{3 (-8 x-1)}-\frac {1}{4 (8 x+1)}+\frac {1}{4}\right )d\sqrt {x}\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 \sqrt {x} \log \left (4 \sqrt {x^2-x}+4 x-1\right )-8 \left (\frac {\sqrt {x^2-x} \arctan \left (\frac {2}{3} \sqrt {2} \sqrt {x-1}\right )}{8 \sqrt {2} \sqrt {x-1} \sqrt {x}}-\frac {\arctan \left (2 \sqrt {2} \sqrt {x}\right )}{8 \sqrt {2}}+\frac {\sqrt {x^2-x}}{4 \sqrt {x}}+\frac {\sqrt {x}}{4}\right )\)

input
Int[Log[-1 + 4*x + 4*Sqrt[(-1 + x)*x]]/Sqrt[x],x]
 
output
-8*(Sqrt[x]/4 + Sqrt[-x + x^2]/(4*Sqrt[x]) + (Sqrt[-x + x^2]*ArcTan[(2*Sqr 
t[2]*Sqrt[-1 + x])/3])/(8*Sqrt[2]*Sqrt[-1 + x]*Sqrt[x]) - ArcTan[2*Sqrt[2] 
*Sqrt[x]]/(8*Sqrt[2])) + 2*Sqrt[x]*Log[-1 + 4*x + 4*Sqrt[-x + x^2]]
 

3.2.10.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 3015
Int[Log[(d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]] 
*((g_.)*(x_))^(m_.), x_Symbol] :> Simp[(g*x)^(m + 1)*(Log[d + e*x + f*Sqrt[ 
a + b*x + c*x^2]]/(g*(m + 1))), x] + Simp[f^2*((b^2 - 4*a*c)/(2*g*(m + 1))) 
   Int[(g*x)^(m + 1)/((2*d*e - b*f^2)*(a + b*x + c*x^2) - f*(b*d - 2*a*e + 
(2*c*d - b*e)*x)*Sqrt[a + b*x + c*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, 
 g, m}, x] && EqQ[e^2 - c*f^2, 0] && NeQ[m, -1] && IntegerQ[2*m]
 

rule 3017
Int[Log[(d_.) + (f_.)*Sqrt[u_] + (e_.)*(x_)]*(v_.), x_Symbol] :> Int[v*Log[ 
d + e*x + f*Sqrt[ExpandToSum[u, x]]], x] /; FreeQ[{d, e, f}, x] && Quadrati 
cQ[u, x] &&  !QuadraticMatchQ[u, x] && (EqQ[v, 1] || MatchQ[v, ((g_.)*x)^(m 
_.) /; FreeQ[{g, m}, x]])
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.2.10.4 Maple [F]

\[\int \frac {\ln \left (-1+4 x +4 \sqrt {\left (-1+x \right ) x}\right )}{\sqrt {x}}d x\]

input
int(ln(-1+4*x+4*((-1+x)*x)^(1/2))/x^(1/2),x)
 
output
int(ln(-1+4*x+4*((-1+x)*x)^(1/2))/x^(1/2),x)
 
3.2.10.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.71 \[ \int \frac {\log \left (-1+4 x+4 \sqrt {(-1+x) x}\right )}{\sqrt {x}} \, dx=\frac {\sqrt {2} x \arctan \left (2 \, \sqrt {2} \sqrt {x}\right ) + \sqrt {2} x \arctan \left (\frac {3 \, \sqrt {2} \sqrt {x}}{4 \, \sqrt {x^{2} - x}}\right ) + 4 \, x^{\frac {3}{2}} \log \left (4 \, x + 4 \, \sqrt {x^{2} - x} - 1\right ) - 4 \, x^{\frac {3}{2}} - 4 \, \sqrt {x^{2} - x} \sqrt {x}}{2 \, x} \]

input
integrate(log(-1+4*x+4*((-1+x)*x)^(1/2))/x^(1/2),x, algorithm="fricas")
 
output
1/2*(sqrt(2)*x*arctan(2*sqrt(2)*sqrt(x)) + sqrt(2)*x*arctan(3/4*sqrt(2)*sq 
rt(x)/sqrt(x^2 - x)) + 4*x^(3/2)*log(4*x + 4*sqrt(x^2 - x) - 1) - 4*x^(3/2 
) - 4*sqrt(x^2 - x)*sqrt(x))/x
 
3.2.10.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\log \left (-1+4 x+4 \sqrt {(-1+x) x}\right )}{\sqrt {x}} \, dx=\text {Timed out} \]

input
integrate(ln(-1+4*x+4*((-1+x)*x)**(1/2))/x**(1/2),x)
 
output
Timed out
 
3.2.10.7 Maxima [F]

\[ \int \frac {\log \left (-1+4 x+4 \sqrt {(-1+x) x}\right )}{\sqrt {x}} \, dx=\int { \frac {\log \left (4 \, x + 4 \, \sqrt {{\left (x - 1\right )} x} - 1\right )}{\sqrt {x}} \,d x } \]

input
integrate(log(-1+4*x+4*((-1+x)*x)^(1/2))/x^(1/2),x, algorithm="maxima")
 
output
2*sqrt(x)*log(4*sqrt(x - 1)*sqrt(x) + 4*x - 1) - 4*sqrt(x) + integrate((2* 
x^2 + x)/(4*x^(7/2) - 5*x^(5/2) + 4*(x^3 - x^2)*sqrt(x - 1) + x^(3/2)), x) 
 + log(sqrt(x) + 1) - log(sqrt(x) - 1)
 
3.2.10.8 Giac [F]

\[ \int \frac {\log \left (-1+4 x+4 \sqrt {(-1+x) x}\right )}{\sqrt {x}} \, dx=\int { \frac {\log \left (4 \, x + 4 \, \sqrt {{\left (x - 1\right )} x} - 1\right )}{\sqrt {x}} \,d x } \]

input
integrate(log(-1+4*x+4*((-1+x)*x)^(1/2))/x^(1/2),x, algorithm="giac")
 
output
integrate(log(4*x + 4*sqrt((x - 1)*x) - 1)/sqrt(x), x)
 
3.2.10.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\log \left (-1+4 x+4 \sqrt {(-1+x) x}\right )}{\sqrt {x}} \, dx=\int \frac {\ln \left (4\,x+4\,\sqrt {x\,\left (x-1\right )}-1\right )}{\sqrt {x}} \,d x \]

input
int(log(4*x + 4*(x*(x - 1))^(1/2) - 1)/x^(1/2),x)
 
output
int(log(4*x + 4*(x*(x - 1))^(1/2) - 1)/x^(1/2), x)