3.3.1 \(\int \log (a \sinh (x)) \, dx\) [201]

3.3.1.1 Optimal result
3.3.1.2 Mathematica [A] (verified)
3.3.1.3 Rubi [C] (verified)
3.3.1.4 Maple [C] (warning: unable to verify)
3.3.1.5 Fricas [A] (verification not implemented)
3.3.1.6 Sympy [F]
3.3.1.7 Maxima [A] (verification not implemented)
3.3.1.8 Giac [F]
3.3.1.9 Mupad [F(-1)]

3.3.1.1 Optimal result

Integrand size = 5, antiderivative size = 39 \[ \int \log (a \sinh (x)) \, dx=\frac {x^2}{2}-x \log \left (1-e^{2 x}\right )+x \log (a \sinh (x))-\frac {\operatorname {PolyLog}\left (2,e^{2 x}\right )}{2} \]

output
1/2*x^2-x*ln(1-exp(2*x))+x*ln(a*sinh(x))-1/2*polylog(2,exp(2*x))
 
3.3.1.2 Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.00 \[ \int \log (a \sinh (x)) \, dx=-\frac {x^2}{2}-x \log \left (1-e^{-2 x}\right )+x \log (a \sinh (x))+\frac {1}{2} \operatorname {PolyLog}\left (2,e^{-2 x}\right ) \]

input
Integrate[Log[a*Sinh[x]],x]
 
output
-1/2*x^2 - x*Log[1 - E^(-2*x)] + x*Log[a*Sinh[x]] + PolyLog[2, E^(-2*x)]/2
 
3.3.1.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.32 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.36, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.600, Rules used = {3028, 3042, 26, 4199, 25, 2620, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \log (a \sinh (x)) \, dx\)

\(\Big \downarrow \) 3028

\(\displaystyle x \log (a \sinh (x))-\int x \coth (x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle x \log (a \sinh (x))-\int -i x \tan \left (i x+\frac {\pi }{2}\right )dx\)

\(\Big \downarrow \) 26

\(\displaystyle x \log (a \sinh (x))+i \int x \tan \left (i x+\frac {\pi }{2}\right )dx\)

\(\Big \downarrow \) 4199

\(\displaystyle x \log (a \sinh (x))+i \left (2 i \int -\frac {e^{2 x} x}{1-e^{2 x}}dx-\frac {i x^2}{2}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle x \log (a \sinh (x))+i \left (-2 i \int \frac {e^{2 x} x}{1-e^{2 x}}dx-\frac {i x^2}{2}\right )\)

\(\Big \downarrow \) 2620

\(\displaystyle x \log (a \sinh (x))+i \left (-2 i \left (\frac {1}{2} \int \log \left (1-e^{2 x}\right )dx-\frac {1}{2} x \log \left (1-e^{2 x}\right )\right )-\frac {i x^2}{2}\right )\)

\(\Big \downarrow \) 2715

\(\displaystyle x \log (a \sinh (x))+i \left (-2 i \left (\frac {1}{4} \int e^{-2 x} \log \left (1-e^{2 x}\right )de^{2 x}-\frac {1}{2} x \log \left (1-e^{2 x}\right )\right )-\frac {i x^2}{2}\right )\)

\(\Big \downarrow \) 2838

\(\displaystyle x \log (a \sinh (x))+i \left (-2 i \left (-\frac {\operatorname {PolyLog}\left (2,e^{2 x}\right )}{4}-\frac {1}{2} x \log \left (1-e^{2 x}\right )\right )-\frac {i x^2}{2}\right )\)

input
Int[Log[a*Sinh[x]],x]
 
output
x*Log[a*Sinh[x]] + I*((-1/2*I)*x^2 - (2*I)*(-1/2*(x*Log[1 - E^(2*x)]) - Po 
lyLog[2, E^(2*x)]/4))
 

3.3.1.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3028
Int[Log[u_], x_Symbol] :> Simp[x*Log[u], x] - Int[SimplifyIntegrand[x*(D[u, 
 x]/u), x], x] /; InverseFunctionFreeQ[u, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4199
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_ 
.)*(x_)], x_Symbol] :> Simp[(-I)*((c + d*x)^(m + 1)/(d*(m + 1))), x] + Simp 
[2*I   Int[((c + d*x)^m*(E^(2*((-I)*e + f*fz*x))/(1 + E^(2*((-I)*e + f*fz*x 
))/E^(2*I*k*Pi))))/E^(2*I*k*Pi), x], x] /; FreeQ[{c, d, e, f, fz}, x] && In 
tegerQ[4*k] && IGtQ[m, 0]
 
3.3.1.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.06 (sec) , antiderivative size = 295, normalized size of antiderivative = 7.56

method result size
risch \(-x \ln \left ({\mathrm e}^{x}\right )+\frac {i \pi \,\operatorname {csgn}\left (i {\mathrm e}^{-x}\right ) \operatorname {csgn}\left (i {\mathrm e}^{-x} \left (-1+{\mathrm e}^{2 x}\right )\right )^{2} x}{2}-\frac {i \pi \,\operatorname {csgn}\left (i {\mathrm e}^{-x} \left (-1+{\mathrm e}^{2 x}\right )\right ) \operatorname {csgn}\left (i a \left (-1+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-x}\right ) \operatorname {csgn}\left (i a \right ) x}{2}+\frac {i \pi \,\operatorname {csgn}\left (i \left (-1+{\mathrm e}^{2 x}\right )\right ) \operatorname {csgn}\left (i {\mathrm e}^{-x} \left (-1+{\mathrm e}^{2 x}\right )\right )^{2} x}{2}-\frac {i \pi \operatorname {csgn}\left (i {\mathrm e}^{-x} \left (-1+{\mathrm e}^{2 x}\right )\right )^{3} x}{2}+\frac {i \pi \,\operatorname {csgn}\left (i {\mathrm e}^{-x} \left (-1+{\mathrm e}^{2 x}\right )\right ) {\operatorname {csgn}\left (i a \left (-1+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-x}\right )}^{2} x}{2}-\frac {i \pi {\operatorname {csgn}\left (i a \left (-1+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-x}\right )}^{3} x}{2}-x \ln \left (2\right )+\ln \left (a \right ) x +\frac {x^{2}}{2}-\frac {i \pi \,\operatorname {csgn}\left (i \left (-1+{\mathrm e}^{2 x}\right )\right ) \operatorname {csgn}\left (i {\mathrm e}^{-x}\right ) \operatorname {csgn}\left (i {\mathrm e}^{-x} \left (-1+{\mathrm e}^{2 x}\right )\right ) x}{2}+\frac {i \pi {\operatorname {csgn}\left (i a \left (-1+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-x}\right )}^{2} \operatorname {csgn}\left (i a \right ) x}{2}+\ln \left ({\mathrm e}^{x}\right ) \ln \left (-1+{\mathrm e}^{2 x}\right )-\operatorname {dilog}\left (1+{\mathrm e}^{x}\right )-\ln \left ({\mathrm e}^{x}\right ) \ln \left (1+{\mathrm e}^{x}\right )+\operatorname {dilog}\left ({\mathrm e}^{x}\right )\) \(295\)

input
int(ln(a*sinh(x)),x,method=_RETURNVERBOSE)
 
output
-x*ln(exp(x))+1/2*I*Pi*csgn(I*exp(-x))*csgn(I*exp(-x)*(-1+exp(2*x)))^2*x-1 
/2*I*Pi*csgn(I*exp(-x)*(-1+exp(2*x)))*csgn(I*a*(-1+exp(2*x))*exp(-x))*csgn 
(I*a)*x+1/2*I*Pi*csgn(I*(-1+exp(2*x)))*csgn(I*exp(-x)*(-1+exp(2*x)))^2*x-1 
/2*I*Pi*csgn(I*exp(-x)*(-1+exp(2*x)))^3*x+1/2*I*Pi*csgn(I*exp(-x)*(-1+exp( 
2*x)))*csgn(I*a*(-1+exp(2*x))*exp(-x))^2*x-1/2*I*Pi*csgn(I*a*(-1+exp(2*x)) 
*exp(-x))^3*x-x*ln(2)+ln(a)*x+1/2*x^2-1/2*I*Pi*csgn(I*(-1+exp(2*x)))*csgn( 
I*exp(-x))*csgn(I*exp(-x)*(-1+exp(2*x)))*x+1/2*I*Pi*csgn(I*a*(-1+exp(2*x)) 
*exp(-x))^2*csgn(I*a)*x+ln(exp(x))*ln(-1+exp(2*x))-dilog(1+exp(x))-ln(exp( 
x))*ln(1+exp(x))+dilog(exp(x))
 
3.3.1.5 Fricas [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 57, normalized size of antiderivative = 1.46 \[ \int \log (a \sinh (x)) \, dx=\frac {1}{2} \, x^{2} + x \log \left (a \sinh \left (x\right )\right ) - x \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) + 1\right ) - x \log \left (-\cosh \left (x\right ) - \sinh \left (x\right ) + 1\right ) - {\rm Li}_2\left (\cosh \left (x\right ) + \sinh \left (x\right )\right ) - {\rm Li}_2\left (-\cosh \left (x\right ) - \sinh \left (x\right )\right ) \]

input
integrate(log(a*sinh(x)),x, algorithm="fricas")
 
output
1/2*x^2 + x*log(a*sinh(x)) - x*log(cosh(x) + sinh(x) + 1) - x*log(-cosh(x) 
 - sinh(x) + 1) - dilog(cosh(x) + sinh(x)) - dilog(-cosh(x) - sinh(x))
 
3.3.1.6 Sympy [F]

\[ \int \log (a \sinh (x)) \, dx=\int \log {\left (a \sinh {\left (x \right )} \right )}\, dx \]

input
integrate(ln(a*sinh(x)),x)
 
output
Integral(log(a*sinh(x)), x)
 
3.3.1.7 Maxima [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.10 \[ \int \log (a \sinh (x)) \, dx=\frac {1}{2} \, x^{2} + x \log \left (a \sinh \left (x\right )\right ) - x \log \left (e^{x} + 1\right ) - x \log \left (-e^{x} + 1\right ) - {\rm Li}_2\left (-e^{x}\right ) - {\rm Li}_2\left (e^{x}\right ) \]

input
integrate(log(a*sinh(x)),x, algorithm="maxima")
 
output
1/2*x^2 + x*log(a*sinh(x)) - x*log(e^x + 1) - x*log(-e^x + 1) - dilog(-e^x 
) - dilog(e^x)
 
3.3.1.8 Giac [F]

\[ \int \log (a \sinh (x)) \, dx=\int { \log \left (a \sinh \left (x\right )\right ) \,d x } \]

input
integrate(log(a*sinh(x)),x, algorithm="giac")
 
output
integrate(log(a*sinh(x)), x)
 
3.3.1.9 Mupad [F(-1)]

Timed out. \[ \int \log (a \sinh (x)) \, dx=\int \ln \left (a\,\mathrm {sinh}\left (x\right )\right ) \,d x \]

input
int(log(a*sinh(x)),x)
 
output
int(log(a*sinh(x)), x)