3.4.86 \(\int \frac {1}{(2 a+2 b \cos (d+e x)+2 a \sin (d+e x))^3} \, dx\) [386]

3.4.86.1 Optimal result
3.4.86.2 Mathematica [A] (verified)
3.4.86.3 Rubi [A] (verified)
3.4.86.4 Maple [B] (verified)
3.4.86.5 Fricas [B] (verification not implemented)
3.4.86.6 Sympy [F(-1)]
3.4.86.7 Maxima [B] (verification not implemented)
3.4.86.8 Giac [B] (verification not implemented)
3.4.86.9 Mupad [B] (verification not implemented)

3.4.86.1 Optimal result

Integrand size = 24, antiderivative size = 142 \[ \int \frac {1}{(2 a+2 b \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=-\frac {\left (3 a^2+b^2\right ) \log \left (a+b \cot \left (\frac {d}{2}+\frac {\pi }{4}+\frac {e x}{2}\right )\right )}{16 b^5 e}-\frac {a \cos (d+e x)-b \sin (d+e x)}{16 b^2 e (a+b \cos (d+e x)+a \sin (d+e x))^2}+\frac {3 \left (a^2 \cos (d+e x)-a b \sin (d+e x)\right )}{16 b^4 e (a+b \cos (d+e x)+a \sin (d+e x))} \]

output
-1/16*(3*a^2+b^2)*ln(a+b*cot(1/2*d+1/4*Pi+1/2*e*x))/b^5/e+1/16*(-a*cos(e*x 
+d)+b*sin(e*x+d))/b^2/e/(a+b*cos(e*x+d)+a*sin(e*x+d))^2+3/16*(a^2*cos(e*x+ 
d)-a*b*sin(e*x+d))/b^4/e/(a+b*cos(e*x+d)+a*sin(e*x+d))
 
3.4.86.2 Mathematica [A] (verified)

Time = 1.92 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.80 \[ \int \frac {1}{(2 a+2 b \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=-\frac {-2 \left (3 a^2+b^2\right ) \log \left (\cos \left (\frac {1}{2} (d+e x)\right )+\sin \left (\frac {1}{2} (d+e x)\right )\right )+2 \left (3 a^2+b^2\right ) \log \left ((a+b) \cos \left (\frac {1}{2} (d+e x)\right )+(a-b) \sin \left (\frac {1}{2} (d+e x)\right )\right )+\frac {b^2}{\left (\cos \left (\frac {1}{2} (d+e x)\right )+\sin \left (\frac {1}{2} (d+e x)\right )\right )^2}+\frac {6 a b \sin \left (\frac {1}{2} (d+e x)\right )}{\cos \left (\frac {1}{2} (d+e x)\right )+\sin \left (\frac {1}{2} (d+e x)\right )}-\frac {b^2 \left (a^2+b^2\right )}{\left ((a+b) \cos \left (\frac {1}{2} (d+e x)\right )+(a-b) \sin \left (\frac {1}{2} (d+e x)\right )\right )^2}+\frac {6 a b \left (a^2+b^2\right ) \sin \left (\frac {1}{2} (d+e x)\right )}{(a+b) \left ((a+b) \cos \left (\frac {1}{2} (d+e x)\right )+(a-b) \sin \left (\frac {1}{2} (d+e x)\right )\right )}}{32 b^5 e} \]

input
Integrate[(2*a + 2*b*Cos[d + e*x] + 2*a*Sin[d + e*x])^(-3),x]
 
output
-1/32*(-2*(3*a^2 + b^2)*Log[Cos[(d + e*x)/2] + Sin[(d + e*x)/2]] + 2*(3*a^ 
2 + b^2)*Log[(a + b)*Cos[(d + e*x)/2] + (a - b)*Sin[(d + e*x)/2]] + b^2/(C 
os[(d + e*x)/2] + Sin[(d + e*x)/2])^2 + (6*a*b*Sin[(d + e*x)/2])/(Cos[(d + 
 e*x)/2] + Sin[(d + e*x)/2]) - (b^2*(a^2 + b^2))/((a + b)*Cos[(d + e*x)/2] 
 + (a - b)*Sin[(d + e*x)/2])^2 + (6*a*b*(a^2 + b^2)*Sin[(d + e*x)/2])/((a 
+ b)*((a + b)*Cos[(d + e*x)/2] + (a - b)*Sin[(d + e*x)/2])))/(b^5*e)
 
3.4.86.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3608, 27, 3042, 3632, 3042, 3602, 16}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(2 a \sin (d+e x)+2 a+2 b \cos (d+e x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(2 a \sin (d+e x)+2 a+2 b \cos (d+e x))^3}dx\)

\(\Big \downarrow \) 3608

\(\displaystyle \frac {\int -\frac {-\sin (d+e x) a+2 a-b \cos (d+e x)}{2 (\sin (d+e x) a+a+b \cos (d+e x))^2}dx}{8 b^2}-\frac {a \cos (d+e x)-b \sin (d+e x)}{16 b^2 e (a \sin (d+e x)+a+b \cos (d+e x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {-\sin (d+e x) a+2 a-b \cos (d+e x)}{(\sin (d+e x) a+a+b \cos (d+e x))^2}dx}{16 b^2}-\frac {a \cos (d+e x)-b \sin (d+e x)}{16 b^2 e (a \sin (d+e x)+a+b \cos (d+e x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {-\sin (d+e x) a+2 a-b \cos (d+e x)}{(\sin (d+e x) a+a+b \cos (d+e x))^2}dx}{16 b^2}-\frac {a \cos (d+e x)-b \sin (d+e x)}{16 b^2 e (a \sin (d+e x)+a+b \cos (d+e x))^2}\)

\(\Big \downarrow \) 3632

\(\displaystyle -\frac {-\left (\frac {3 a^2}{b^2}+1\right ) \int \frac {1}{\sin (d+e x) a+a+b \cos (d+e x)}dx-\frac {3 \left (a^2 \cos (d+e x)-a b \sin (d+e x)\right )}{b^2 e (a \sin (d+e x)+a+b \cos (d+e x))}}{16 b^2}-\frac {a \cos (d+e x)-b \sin (d+e x)}{16 b^2 e (a \sin (d+e x)+a+b \cos (d+e x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\left (\frac {3 a^2}{b^2}+1\right ) \int \frac {1}{\sin (d+e x) a+a+b \cos (d+e x)}dx-\frac {3 \left (a^2 \cos (d+e x)-a b \sin (d+e x)\right )}{b^2 e (a \sin (d+e x)+a+b \cos (d+e x))}}{16 b^2}-\frac {a \cos (d+e x)-b \sin (d+e x)}{16 b^2 e (a \sin (d+e x)+a+b \cos (d+e x))^2}\)

\(\Big \downarrow \) 3602

\(\displaystyle -\frac {\frac {\left (\frac {3 a^2}{b^2}+1\right ) \int \frac {1}{a+b \cot \left (\frac {d}{2}+\frac {e x}{2}+\frac {\pi }{4}\right )}d\cot \left (\frac {d}{2}+\frac {e x}{2}+\frac {\pi }{4}\right )}{e}-\frac {3 \left (a^2 \cos (d+e x)-a b \sin (d+e x)\right )}{b^2 e (a \sin (d+e x)+a+b \cos (d+e x))}}{16 b^2}-\frac {a \cos (d+e x)-b \sin (d+e x)}{16 b^2 e (a \sin (d+e x)+a+b \cos (d+e x))^2}\)

\(\Big \downarrow \) 16

\(\displaystyle -\frac {\frac {\left (\frac {3 a^2}{b^2}+1\right ) \log \left (a+b \cot \left (\frac {d}{2}+\frac {e x}{2}+\frac {\pi }{4}\right )\right )}{b e}-\frac {3 \left (a^2 \cos (d+e x)-a b \sin (d+e x)\right )}{b^2 e (a \sin (d+e x)+a+b \cos (d+e x))}}{16 b^2}-\frac {a \cos (d+e x)-b \sin (d+e x)}{16 b^2 e (a \sin (d+e x)+a+b \cos (d+e x))^2}\)

input
Int[(2*a + 2*b*Cos[d + e*x] + 2*a*Sin[d + e*x])^(-3),x]
 
output
-1/16*(a*Cos[d + e*x] - b*Sin[d + e*x])/(b^2*e*(a + b*Cos[d + e*x] + a*Sin 
[d + e*x])^2) - (((1 + (3*a^2)/b^2)*Log[a + b*Cot[d/2 + Pi/4 + (e*x)/2]])/ 
(b*e) - (3*(a^2*Cos[d + e*x] - a*b*Sin[d + e*x]))/(b^2*e*(a + b*Cos[d + e* 
x] + a*Sin[d + e*x])))/(16*b^2)
 

3.4.86.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3602
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^ 
(-1), x_Symbol] :> Module[{f = FreeFactors[Cot[(d + e*x)/2 + Pi/4], x]}, Si 
mp[-f/e   Subst[Int[1/(a + b*f*x), x], x, Cot[(d + e*x)/2 + Pi/4]/f], x]] / 
; FreeQ[{a, b, c, d, e}, x] && EqQ[a - c, 0] && NeQ[a - b, 0]
 

rule 3608
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^ 
(n_), x_Symbol] :> Simp[((-c)*Cos[d + e*x] + b*Sin[d + e*x])*((a + b*Cos[d 
+ e*x] + c*Sin[d + e*x])^(n + 1)/(e*(n + 1)*(a^2 - b^2 - c^2))), x] + Simp[ 
1/((n + 1)*(a^2 - b^2 - c^2))   Int[(a*(n + 1) - b*(n + 2)*Cos[d + e*x] - c 
*(n + 2)*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1), x], x 
] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && LtQ[n, -1] && 
NeQ[n, -3/2]
 

rule 3632
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]) 
/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^2, 
 x_Symbol] :> Simp[(c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B - b*A)*Sin[ 
d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])), x] + 
 Simp[(a*A - b*B - c*C)/(a^2 - b^2 - c^2)   Int[1/(a + b*Cos[d + e*x] + c*S 
in[d + e*x]), x], x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[a^2 - b^2 
 - c^2, 0] && NeQ[a*A - b*B - c*C, 0]
 
3.4.86.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(263\) vs. \(2(130)=260\).

Time = 1.95 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.86

method result size
derivativedivides \(\frac {-\frac {1}{2 b^{3} \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )^{2}}-\frac {-3 a -b}{2 b^{4} \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )}+\frac {\left (3 a^{2}+b^{2}\right ) \ln \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )}{2 b^{5}}+\frac {\left (-3 a^{3}+3 a^{2} b -a \,b^{2}+b^{3}\right ) \ln \left (a \tan \left (\frac {e x}{2}+\frac {d}{2}\right )-b \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+a +b \right )}{2 b^{5} \left (a -b \right )}-\frac {-a^{4}-2 a^{2} b^{2}-b^{4}}{2 b^{3} \left (a -b \right )^{2} \left (a \tan \left (\frac {e x}{2}+\frac {d}{2}\right )-b \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+a +b \right )^{2}}-\frac {-3 a^{4}+4 a^{3} b -2 a^{2} b^{2}+4 a \,b^{3}+b^{4}}{2 b^{4} \left (a -b \right )^{2} \left (a \tan \left (\frac {e x}{2}+\frac {d}{2}\right )-b \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+a +b \right )}}{8 e}\) \(264\)
default \(\frac {-\frac {1}{2 b^{3} \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )^{2}}-\frac {-3 a -b}{2 b^{4} \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )}+\frac {\left (3 a^{2}+b^{2}\right ) \ln \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )}{2 b^{5}}+\frac {\left (-3 a^{3}+3 a^{2} b -a \,b^{2}+b^{3}\right ) \ln \left (a \tan \left (\frac {e x}{2}+\frac {d}{2}\right )-b \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+a +b \right )}{2 b^{5} \left (a -b \right )}-\frac {-a^{4}-2 a^{2} b^{2}-b^{4}}{2 b^{3} \left (a -b \right )^{2} \left (a \tan \left (\frac {e x}{2}+\frac {d}{2}\right )-b \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+a +b \right )^{2}}-\frac {-3 a^{4}+4 a^{3} b -2 a^{2} b^{2}+4 a \,b^{3}+b^{4}}{2 b^{4} \left (a -b \right )^{2} \left (a \tan \left (\frac {e x}{2}+\frac {d}{2}\right )-b \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+a +b \right )}}{8 e}\) \(264\)
risch \(-\frac {i \left (3 a^{2} b \,{\mathrm e}^{3 i \left (e x +d \right )}+b^{3} {\mathrm e}^{3 i \left (e x +d \right )}+9 a^{3} {\mathrm e}^{2 i \left (e x +d \right )}+3 a \,b^{2} {\mathrm e}^{2 i \left (e x +d \right )}-3 i a^{3} {\mathrm e}^{3 i \left (e x +d \right )}-i a \,b^{2} {\mathrm e}^{3 i \left (e x +d \right )}+9 a^{2} b \,{\mathrm e}^{i \left (e x +d \right )}-b^{3} {\mathrm e}^{i \left (e x +d \right )}-3 a^{3}+3 a \,b^{2}+9 i a^{3} {\mathrm e}^{i \left (e x +d \right )}-i {\mathrm e}^{i \left (e x +d \right )} a \,b^{2}+6 i b \,a^{2}\right )}{8 \left (-i a \,{\mathrm e}^{2 i \left (e x +d \right )}+b \,{\mathrm e}^{2 i \left (e x +d \right )}+i a +2 a \,{\mathrm e}^{i \left (e x +d \right )}+b \right )^{2} b^{4} e}-\frac {3 \ln \left ({\mathrm e}^{i \left (e x +d \right )}+\frac {i a +b}{i b +a}\right ) a^{2}}{16 b^{5} e}-\frac {\ln \left ({\mathrm e}^{i \left (e x +d \right )}+\frac {i a +b}{i b +a}\right )}{16 b^{3} e}+\frac {3 \ln \left ({\mathrm e}^{i \left (e x +d \right )}+i\right ) a^{2}}{16 b^{5} e}+\frac {\ln \left ({\mathrm e}^{i \left (e x +d \right )}+i\right )}{16 b^{3} e}\) \(338\)
norman \(\frac {\frac {9 a^{5}+18 a^{4} b +12 a^{3} b^{2}+6 a^{2} b^{3}+a \,b^{4}}{16 b^{4} e \left (3 a^{2}-b^{2}\right )}-\frac {\left (9 a^{5}-9 a^{4} b +6 a^{3} b^{2}-6 a^{2} b^{3}+3 a \,b^{4}+b^{5}\right ) \tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{3}}{8 b^{4} e \left (3 a^{2}-b^{2}\right )}+\frac {\left (9 a^{5}+9 a^{4} b +6 a^{3} b^{2}+6 a^{2} b^{3}+3 a \,b^{4}-b^{5}\right ) \tan \left (\frac {e x}{2}+\frac {d}{2}\right )}{8 b^{4} e \left (3 a^{2}-b^{2}\right )}-\frac {\left (9 a^{5}-18 a^{4} b +12 a^{3} b^{2}-6 a^{2} b^{3}+a \,b^{4}\right ) \tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{4}}{16 b^{4} e \left (3 a^{2}-b^{2}\right )}}{\left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )^{2} \left (a \tan \left (\frac {e x}{2}+\frac {d}{2}\right )-b \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+a +b \right )^{2}}+\frac {\left (3 a^{2}+b^{2}\right ) \ln \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )}{16 b^{5} e}-\frac {\left (3 a^{2}+b^{2}\right ) \ln \left (a \tan \left (\frac {e x}{2}+\frac {d}{2}\right )-b \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+a +b \right )}{16 b^{5} e}\) \(375\)
parallelrisch \(\frac {-9 \left (a^{2}+\frac {b^{2}}{3}\right ) \left (\left (a^{2}-b^{2}\right ) \cos \left (2 e x +2 d \right )-4 a^{2} \sin \left (e x +d \right )-4 a b \cos \left (e x +d \right )-2 a b \sin \left (2 e x +2 d \right )-3 a^{2}-b^{2}\right ) \left (a^{2}-\frac {b^{2}}{3}\right ) \ln \left (a +b +\left (a -b \right ) \tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )+9 \left (a^{2}+\frac {b^{2}}{3}\right ) \left (\left (a^{2}-b^{2}\right ) \cos \left (2 e x +2 d \right )-4 a^{2} \sin \left (e x +d \right )-4 a b \cos \left (e x +d \right )-2 a b \sin \left (2 e x +2 d \right )-3 a^{2}-b^{2}\right ) \left (a^{2}-\frac {b^{2}}{3}\right ) \ln \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )+\left (-9 a^{4} b^{2}-3 a^{2} b^{4}\right ) \cos \left (2 e x +2 d \right )+\left (-9 a^{5} b -6 a^{3} b^{3}-3 a \,b^{5}\right ) \sin \left (2 e x +2 d \right )+\left (-18 a^{5} b -24 a^{3} b^{3}-2 a \,b^{5}\right ) \cos \left (e x +d \right )+\left (-18 a^{4} b^{2}-12 a^{2} b^{4}+2 b^{6}\right ) \sin \left (e x +d \right )-27 a^{4} b^{2}-9 a^{2} b^{4}}{48 b^{5} \left (\left (a^{2}-b^{2}\right ) \cos \left (2 e x +2 d \right )-4 a^{2} \sin \left (e x +d \right )-4 a b \cos \left (e x +d \right )-2 a b \sin \left (2 e x +2 d \right )-3 a^{2}-b^{2}\right ) e \left (a^{2}-\frac {b^{2}}{3}\right )}\) \(417\)

input
int(1/(2*a+2*b*cos(e*x+d)+2*a*sin(e*x+d))^3,x,method=_RETURNVERBOSE)
 
output
1/8/e*(-1/2/b^3/(1+tan(1/2*e*x+1/2*d))^2-1/2*(-3*a-b)/b^4/(1+tan(1/2*e*x+1 
/2*d))+1/2*(3*a^2+b^2)/b^5*ln(1+tan(1/2*e*x+1/2*d))+1/2*(-3*a^3+3*a^2*b-a* 
b^2+b^3)/b^5/(a-b)*ln(a*tan(1/2*e*x+1/2*d)-b*tan(1/2*e*x+1/2*d)+a+b)-1/2*( 
-a^4-2*a^2*b^2-b^4)/b^3/(a-b)^2/(a*tan(1/2*e*x+1/2*d)-b*tan(1/2*e*x+1/2*d) 
+a+b)^2-1/2*(-3*a^4+4*a^3*b-2*a^2*b^2+4*a*b^3+b^4)/b^4/(a-b)^2/(a*tan(1/2* 
e*x+1/2*d)-b*tan(1/2*e*x+1/2*d)+a+b))
 
3.4.86.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 420 vs. \(2 (130) = 260\).

Time = 0.26 (sec) , antiderivative size = 420, normalized size of antiderivative = 2.96 \[ \int \frac {1}{(2 a+2 b \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\frac {12 \, a^{2} b^{2} \cos \left (e x + d\right )^{2} - 6 \, a^{2} b^{2} + 2 \, {\left (3 \, a^{3} b - a b^{3}\right )} \cos \left (e x + d\right ) - {\left (6 \, a^{4} + 2 \, a^{2} b^{2} - {\left (3 \, a^{4} - 2 \, a^{2} b^{2} - b^{4}\right )} \cos \left (e x + d\right )^{2} + 2 \, {\left (3 \, a^{3} b + a b^{3}\right )} \cos \left (e x + d\right ) + 2 \, {\left (3 \, a^{4} + a^{2} b^{2} + {\left (3 \, a^{3} b + a b^{3}\right )} \cos \left (e x + d\right )\right )} \sin \left (e x + d\right )\right )} \log \left (2 \, a b \cos \left (e x + d\right ) + a^{2} + b^{2} + {\left (a^{2} - b^{2}\right )} \sin \left (e x + d\right )\right ) + {\left (6 \, a^{4} + 2 \, a^{2} b^{2} - {\left (3 \, a^{4} - 2 \, a^{2} b^{2} - b^{4}\right )} \cos \left (e x + d\right )^{2} + 2 \, {\left (3 \, a^{3} b + a b^{3}\right )} \cos \left (e x + d\right ) + 2 \, {\left (3 \, a^{4} + a^{2} b^{2} + {\left (3 \, a^{3} b + a b^{3}\right )} \cos \left (e x + d\right )\right )} \sin \left (e x + d\right )\right )} \log \left (\sin \left (e x + d\right ) + 1\right ) - 2 \, {\left (3 \, a^{2} b^{2} - b^{4} - 3 \, {\left (a^{3} b - a b^{3}\right )} \cos \left (e x + d\right )\right )} \sin \left (e x + d\right )}{32 \, {\left (2 \, a b^{6} e \cos \left (e x + d\right ) + 2 \, a^{2} b^{5} e - {\left (a^{2} b^{5} - b^{7}\right )} e \cos \left (e x + d\right )^{2} + 2 \, {\left (a b^{6} e \cos \left (e x + d\right ) + a^{2} b^{5} e\right )} \sin \left (e x + d\right )\right )}} \]

input
integrate(1/(2*a+2*b*cos(e*x+d)+2*a*sin(e*x+d))^3,x, algorithm="fricas")
 
output
1/32*(12*a^2*b^2*cos(e*x + d)^2 - 6*a^2*b^2 + 2*(3*a^3*b - a*b^3)*cos(e*x 
+ d) - (6*a^4 + 2*a^2*b^2 - (3*a^4 - 2*a^2*b^2 - b^4)*cos(e*x + d)^2 + 2*( 
3*a^3*b + a*b^3)*cos(e*x + d) + 2*(3*a^4 + a^2*b^2 + (3*a^3*b + a*b^3)*cos 
(e*x + d))*sin(e*x + d))*log(2*a*b*cos(e*x + d) + a^2 + b^2 + (a^2 - b^2)* 
sin(e*x + d)) + (6*a^4 + 2*a^2*b^2 - (3*a^4 - 2*a^2*b^2 - b^4)*cos(e*x + d 
)^2 + 2*(3*a^3*b + a*b^3)*cos(e*x + d) + 2*(3*a^4 + a^2*b^2 + (3*a^3*b + a 
*b^3)*cos(e*x + d))*sin(e*x + d))*log(sin(e*x + d) + 1) - 2*(3*a^2*b^2 - b 
^4 - 3*(a^3*b - a*b^3)*cos(e*x + d))*sin(e*x + d))/(2*a*b^6*e*cos(e*x + d) 
 + 2*a^2*b^5*e - (a^2*b^5 - b^7)*e*cos(e*x + d)^2 + 2*(a*b^6*e*cos(e*x + d 
) + a^2*b^5*e)*sin(e*x + d))
 
3.4.86.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(2 a+2 b \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\text {Timed out} \]

input
integrate(1/(2*a+2*b*cos(e*x+d)+2*a*sin(e*x+d))**3,x)
 
output
Timed out
 
3.4.86.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 493 vs. \(2 (130) = 260\).

Time = 0.23 (sec) , antiderivative size = 493, normalized size of antiderivative = 3.47 \[ \int \frac {1}{(2 a+2 b \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\frac {\frac {2 \, {\left (3 \, a^{5} - 4 \, a^{3} b^{2} - a b^{4} + \frac {{\left (9 \, a^{5} - 9 \, a^{4} b - 2 \, a^{3} b^{2} + 2 \, a^{2} b^{3} - 5 \, a b^{4} + b^{5}\right )} \sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1} + \frac {{\left (9 \, a^{5} - 18 \, a^{4} b + 12 \, a^{3} b^{2} - 6 \, a^{2} b^{3} + a b^{4}\right )} \sin \left (e x + d\right )^{2}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{2}} + \frac {{\left (3 \, a^{5} - 9 \, a^{4} b + 10 \, a^{3} b^{2} - 6 \, a^{2} b^{3} + a b^{4} + b^{5}\right )} \sin \left (e x + d\right )^{3}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{3}}\right )}}{a^{4} b^{4} - 2 \, a^{2} b^{6} + b^{8} + \frac {4 \, {\left (a^{4} b^{4} - a^{3} b^{5} - a^{2} b^{6} + a b^{7}\right )} \sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1} + \frac {2 \, {\left (3 \, a^{4} b^{4} - 6 \, a^{3} b^{5} + 2 \, a^{2} b^{6} + 2 \, a b^{7} - b^{8}\right )} \sin \left (e x + d\right )^{2}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{2}} + \frac {4 \, {\left (a^{4} b^{4} - 3 \, a^{3} b^{5} + 3 \, a^{2} b^{6} - a b^{7}\right )} \sin \left (e x + d\right )^{3}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{3}} + \frac {{\left (a^{4} b^{4} - 4 \, a^{3} b^{5} + 6 \, a^{2} b^{6} - 4 \, a b^{7} + b^{8}\right )} \sin \left (e x + d\right )^{4}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{4}}} - \frac {{\left (3 \, a^{2} + b^{2}\right )} \log \left (-a - b - \frac {{\left (a - b\right )} \sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1}\right )}{b^{5}} + \frac {{\left (3 \, a^{2} + b^{2}\right )} \log \left (\frac {\sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1} + 1\right )}{b^{5}}}{16 \, e} \]

input
integrate(1/(2*a+2*b*cos(e*x+d)+2*a*sin(e*x+d))^3,x, algorithm="maxima")
 
output
1/16*(2*(3*a^5 - 4*a^3*b^2 - a*b^4 + (9*a^5 - 9*a^4*b - 2*a^3*b^2 + 2*a^2* 
b^3 - 5*a*b^4 + b^5)*sin(e*x + d)/(cos(e*x + d) + 1) + (9*a^5 - 18*a^4*b + 
 12*a^3*b^2 - 6*a^2*b^3 + a*b^4)*sin(e*x + d)^2/(cos(e*x + d) + 1)^2 + (3* 
a^5 - 9*a^4*b + 10*a^3*b^2 - 6*a^2*b^3 + a*b^4 + b^5)*sin(e*x + d)^3/(cos( 
e*x + d) + 1)^3)/(a^4*b^4 - 2*a^2*b^6 + b^8 + 4*(a^4*b^4 - a^3*b^5 - a^2*b 
^6 + a*b^7)*sin(e*x + d)/(cos(e*x + d) + 1) + 2*(3*a^4*b^4 - 6*a^3*b^5 + 2 
*a^2*b^6 + 2*a*b^7 - b^8)*sin(e*x + d)^2/(cos(e*x + d) + 1)^2 + 4*(a^4*b^4 
 - 3*a^3*b^5 + 3*a^2*b^6 - a*b^7)*sin(e*x + d)^3/(cos(e*x + d) + 1)^3 + (a 
^4*b^4 - 4*a^3*b^5 + 6*a^2*b^6 - 4*a*b^7 + b^8)*sin(e*x + d)^4/(cos(e*x + 
d) + 1)^4) - (3*a^2 + b^2)*log(-a - b - (a - b)*sin(e*x + d)/(cos(e*x + d) 
 + 1))/b^5 + (3*a^2 + b^2)*log(sin(e*x + d)/(cos(e*x + d) + 1) + 1)/b^5)/e
 
3.4.86.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 458 vs. \(2 (130) = 260\).

Time = 0.30 (sec) , antiderivative size = 458, normalized size of antiderivative = 3.23 \[ \int \frac {1}{(2 a+2 b \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\frac {\frac {2 \, {\left (3 \, a^{5} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{3} - 9 \, a^{4} b \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{3} + 10 \, a^{3} b^{2} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{3} - 6 \, a^{2} b^{3} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{3} + a b^{4} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{3} + b^{5} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{3} + 9 \, a^{5} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{2} - 18 \, a^{4} b \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{2} + 12 \, a^{3} b^{2} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{2} - 6 \, a^{2} b^{3} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{2} + a b^{4} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{2} + 9 \, a^{5} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) - 9 \, a^{4} b \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) - 2 \, a^{3} b^{2} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) + 2 \, a^{2} b^{3} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) - 5 \, a b^{4} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) + b^{5} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) + 3 \, a^{5} - 4 \, a^{3} b^{2} - a b^{4}\right )}}{{\left (a^{2} b^{4} - 2 \, a b^{5} + b^{6}\right )} {\left (a \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{2} - b \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{2} + 2 \, a \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) + a + b\right )}^{2}} + \frac {{\left (3 \, a^{2} + b^{2}\right )} \log \left (\frac {{\left | 2 \, a \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) - 2 \, b \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) + 2 \, a - 2 \, {\left | b \right |} \right |}}{{\left | 2 \, a \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) - 2 \, b \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) + 2 \, a + 2 \, {\left | b \right |} \right |}}\right )}{b^{4} {\left | b \right |}}}{16 \, e} \]

input
integrate(1/(2*a+2*b*cos(e*x+d)+2*a*sin(e*x+d))^3,x, algorithm="giac")
 
output
1/16*(2*(3*a^5*tan(1/2*e*x + 1/2*d)^3 - 9*a^4*b*tan(1/2*e*x + 1/2*d)^3 + 1 
0*a^3*b^2*tan(1/2*e*x + 1/2*d)^3 - 6*a^2*b^3*tan(1/2*e*x + 1/2*d)^3 + a*b^ 
4*tan(1/2*e*x + 1/2*d)^3 + b^5*tan(1/2*e*x + 1/2*d)^3 + 9*a^5*tan(1/2*e*x 
+ 1/2*d)^2 - 18*a^4*b*tan(1/2*e*x + 1/2*d)^2 + 12*a^3*b^2*tan(1/2*e*x + 1/ 
2*d)^2 - 6*a^2*b^3*tan(1/2*e*x + 1/2*d)^2 + a*b^4*tan(1/2*e*x + 1/2*d)^2 + 
 9*a^5*tan(1/2*e*x + 1/2*d) - 9*a^4*b*tan(1/2*e*x + 1/2*d) - 2*a^3*b^2*tan 
(1/2*e*x + 1/2*d) + 2*a^2*b^3*tan(1/2*e*x + 1/2*d) - 5*a*b^4*tan(1/2*e*x + 
 1/2*d) + b^5*tan(1/2*e*x + 1/2*d) + 3*a^5 - 4*a^3*b^2 - a*b^4)/((a^2*b^4 
- 2*a*b^5 + b^6)*(a*tan(1/2*e*x + 1/2*d)^2 - b*tan(1/2*e*x + 1/2*d)^2 + 2* 
a*tan(1/2*e*x + 1/2*d) + a + b)^2) + (3*a^2 + b^2)*log(abs(2*a*tan(1/2*e*x 
 + 1/2*d) - 2*b*tan(1/2*e*x + 1/2*d) + 2*a - 2*abs(b))/abs(2*a*tan(1/2*e*x 
 + 1/2*d) - 2*b*tan(1/2*e*x + 1/2*d) + 2*a + 2*abs(b)))/(b^4*abs(b)))/e
 
3.4.86.9 Mupad [B] (verification not implemented)

Time = 30.88 (sec) , antiderivative size = 360, normalized size of antiderivative = 2.54 \[ \int \frac {1}{(2 a+2 b \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=-\frac {\frac {-3\,a^5+4\,a^3\,b^2+a\,b^4}{2\,b^4\,{\left (a-b\right )}^2}+\frac {\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )\,\left (-9\,a^5+9\,a^4\,b+2\,a^3\,b^2-2\,a^2\,b^3+5\,a\,b^4-b^5\right )}{2\,b^4\,{\left (a-b\right )}^2}+\frac {{\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )}^3\,\left (-3\,a^4+6\,a^3\,b-4\,a^2\,b^2+2\,a\,b^3+b^4\right )}{2\,b^4\,\left (a-b\right )}-\frac {{\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )}^2\,\left (9\,a^5-18\,a^4\,b+12\,a^3\,b^2-6\,a^2\,b^3+a\,b^4\right )}{2\,b^4\,{\left (a-b\right )}^2}}{e\,\left (8\,a\,b+{\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )}^2\,\left (24\,a^2-8\,b^2\right )-{\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )}^3\,\left (16\,a\,b-16\,a^2\right )+{\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )}^4\,\left (4\,a^2-8\,a\,b+4\,b^2\right )+4\,a^2+4\,b^2+\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )\,\left (16\,a^2+16\,b\,a\right )\right )}-\frac {\mathrm {atanh}\left (\frac {2\,a+\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )\,\left (2\,a-2\,b\right )}{2\,b}\right )\,\left (3\,a^2+b^2\right )}{8\,b^5\,e} \]

input
int(1/(2*a + 2*b*cos(d + e*x) + 2*a*sin(d + e*x))^3,x)
 
output
- ((a*b^4 - 3*a^5 + 4*a^3*b^2)/(2*b^4*(a - b)^2) + (tan(d/2 + (e*x)/2)*(5* 
a*b^4 + 9*a^4*b - 9*a^5 - b^5 - 2*a^2*b^3 + 2*a^3*b^2))/(2*b^4*(a - b)^2) 
+ (tan(d/2 + (e*x)/2)^3*(2*a*b^3 + 6*a^3*b - 3*a^4 + b^4 - 4*a^2*b^2))/(2* 
b^4*(a - b)) - (tan(d/2 + (e*x)/2)^2*(a*b^4 - 18*a^4*b + 9*a^5 - 6*a^2*b^3 
 + 12*a^3*b^2))/(2*b^4*(a - b)^2))/(e*(8*a*b + tan(d/2 + (e*x)/2)^2*(24*a^ 
2 - 8*b^2) - tan(d/2 + (e*x)/2)^3*(16*a*b - 16*a^2) + tan(d/2 + (e*x)/2)^4 
*(4*a^2 - 8*a*b + 4*b^2) + 4*a^2 + 4*b^2 + tan(d/2 + (e*x)/2)*(16*a*b + 16 
*a^2))) - (atanh((2*a + tan(d/2 + (e*x)/2)*(2*a - 2*b))/(2*b))*(3*a^2 + b^ 
2))/(8*b^5*e)