3.5.49 \(\int \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{\sqrt {\sec (d+e x)}} \, dx\) [449]

3.5.49.1 Optimal result
3.5.49.2 Mathematica [C] (warning: unable to verify)
3.5.49.3 Rubi [A] (verified)
3.5.49.4 Maple [C] (verified)
3.5.49.5 Fricas [C] (verification not implemented)
3.5.49.6 Sympy [F]
3.5.49.7 Maxima [F]
3.5.49.8 Giac [F]
3.5.49.9 Mupad [F(-1)]

3.5.49.1 Optimal result

Integrand size = 33, antiderivative size = 118 \[ \int \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{\sqrt {\sec (d+e x)}} \, dx=\frac {2 E\left (\frac {1}{2} \left (d+e x-\tan ^{-1}(a,c)\right )|\frac {2 \sqrt {a^2+c^2}}{b+\sqrt {a^2+c^2}}\right ) \sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{e \sqrt {\sec (d+e x)} \sqrt {\frac {b+a \cos (d+e x)+c \sin (d+e x)}{b+\sqrt {a^2+c^2}}}} \]

output
2*(cos(1/2*d+1/2*e*x-1/2*arctan(a,c))^2)^(1/2)/cos(1/2*d+1/2*e*x-1/2*arcta 
n(a,c))*EllipticE(sin(1/2*d+1/2*e*x-1/2*arctan(a,c)),2^(1/2)*((a^2+c^2)^(1 
/2)/(b+(a^2+c^2)^(1/2)))^(1/2))*(a+b*sec(e*x+d)+c*tan(e*x+d))^(1/2)/e/sec( 
e*x+d)^(1/2)/((b+a*cos(e*x+d)+c*sin(e*x+d))/(b+(a^2+c^2)^(1/2)))^(1/2)
 
3.5.49.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 6.80 (sec) , antiderivative size = 1580, normalized size of antiderivative = 13.39 \[ \int \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{\sqrt {\sec (d+e x)}} \, dx =\text {Too large to display} \]

input
Integrate[Sqrt[a + b*Sec[d + e*x] + c*Tan[d + e*x]]/Sqrt[Sec[d + e*x]],x]
 
output
(2*a*Sqrt[a + b*Sec[d + e*x] + c*Tan[d + e*x]])/(c*e*Sqrt[Sec[d + e*x]]) + 
 (2*b*AppellF1[1/2, 1/2, 1/2, 3/2, -((b + Sqrt[1 + a^2/c^2]*c*Sin[d + e*x 
+ ArcTan[a/c]])/(Sqrt[1 + a^2/c^2]*(1 - b/(Sqrt[1 + a^2/c^2]*c))*c)), -((b 
 + Sqrt[1 + a^2/c^2]*c*Sin[d + e*x + ArcTan[a/c]])/(Sqrt[1 + a^2/c^2]*(-1 
- b/(Sqrt[1 + a^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[a/c]]*Sqrt[(c*Sqrt[(a 
^2 + c^2)/c^2] - c*Sqrt[(a^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[a/c]])/(b + 
c*Sqrt[(a^2 + c^2)/c^2])]*Sqrt[b + c*Sqrt[(a^2 + c^2)/c^2]*Sin[d + e*x + A 
rcTan[a/c]]]*Sqrt[(c*Sqrt[(a^2 + c^2)/c^2] + c*Sqrt[(a^2 + c^2)/c^2]*Sin[d 
 + e*x + ArcTan[a/c]])/(-b + c*Sqrt[(a^2 + c^2)/c^2])]*Sqrt[a + b*Sec[d + 
e*x] + c*Tan[d + e*x]])/(Sqrt[1 + a^2/c^2]*c*e*Sqrt[Sec[d + e*x]]*Sqrt[b + 
 a*Cos[d + e*x] + c*Sin[d + e*x]]) + (a^2*(-((c*AppellF1[-1/2, -1/2, -1/2, 
 1/2, -((b + a*Sqrt[1 + c^2/a^2]*Cos[d + e*x - ArcTan[c/a]])/(a*Sqrt[1 + c 
^2/a^2]*(1 - b/(a*Sqrt[1 + c^2/a^2])))), -((b + a*Sqrt[1 + c^2/a^2]*Cos[d 
+ e*x - ArcTan[c/a]])/(a*Sqrt[1 + c^2/a^2]*(-1 - b/(a*Sqrt[1 + c^2/a^2]))) 
)]*Sin[d + e*x - ArcTan[c/a]])/(a*Sqrt[1 + c^2/a^2]*Sqrt[(a*Sqrt[(a^2 + c^ 
2)/a^2] - a*Sqrt[(a^2 + c^2)/a^2]*Cos[d + e*x - ArcTan[c/a]])/(b + a*Sqrt[ 
(a^2 + c^2)/a^2])]*Sqrt[b + a*Sqrt[(a^2 + c^2)/a^2]*Cos[d + e*x - ArcTan[c 
/a]]]*Sqrt[(a*Sqrt[(a^2 + c^2)/a^2] + a*Sqrt[(a^2 + c^2)/a^2]*Cos[d + e*x 
- ArcTan[c/a]])/(-b + a*Sqrt[(a^2 + c^2)/a^2])])) - ((2*a*(b + a*Sqrt[1 + 
c^2/a^2]*Cos[d + e*x - ArcTan[c/a]]))/(a^2 + c^2) - (c*Sin[d + e*x - Ar...
 
3.5.49.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3042, 3646, 3042, 3598, 3042, 3132}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{\sqrt {\sec (d+e x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{\sqrt {\sec (d+e x)}}dx\)

\(\Big \downarrow \) 3646

\(\displaystyle \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)} \int \sqrt {b+a \cos (d+e x)+c \sin (d+e x)}dx}{\sqrt {\sec (d+e x)} \sqrt {a \cos (d+e x)+b+c \sin (d+e x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)} \int \sqrt {b+a \cos (d+e x)+c \sin (d+e x)}dx}{\sqrt {\sec (d+e x)} \sqrt {a \cos (d+e x)+b+c \sin (d+e x)}}\)

\(\Big \downarrow \) 3598

\(\displaystyle \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)} \int \sqrt {\frac {b}{b+\sqrt {a^2+c^2}}+\frac {\sqrt {a^2+c^2} \cos \left (d+e x-\tan ^{-1}(a,c)\right )}{b+\sqrt {a^2+c^2}}}dx}{\sqrt {\sec (d+e x)} \sqrt {\frac {a \cos (d+e x)+b+c \sin (d+e x)}{\sqrt {a^2+c^2}+b}}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)} \int \sqrt {\frac {b}{b+\sqrt {a^2+c^2}}+\frac {\sqrt {a^2+c^2} \sin \left (d+e x-\tan ^{-1}(a,c)+\frac {\pi }{2}\right )}{b+\sqrt {a^2+c^2}}}dx}{\sqrt {\sec (d+e x)} \sqrt {\frac {a \cos (d+e x)+b+c \sin (d+e x)}{\sqrt {a^2+c^2}+b}}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {2 \sqrt {a+b \sec (d+e x)+c \tan (d+e x)} E\left (\frac {1}{2} \left (d+e x-\tan ^{-1}(a,c)\right )|\frac {2 \sqrt {a^2+c^2}}{b+\sqrt {a^2+c^2}}\right )}{e \sqrt {\sec (d+e x)} \sqrt {\frac {a \cos (d+e x)+b+c \sin (d+e x)}{\sqrt {a^2+c^2}+b}}}\)

input
Int[Sqrt[a + b*Sec[d + e*x] + c*Tan[d + e*x]]/Sqrt[Sec[d + e*x]],x]
 
output
(2*EllipticE[(d + e*x - ArcTan[a, c])/2, (2*Sqrt[a^2 + c^2])/(b + Sqrt[a^2 
 + c^2])]*Sqrt[a + b*Sec[d + e*x] + c*Tan[d + e*x]])/(e*Sqrt[Sec[d + e*x]] 
*Sqrt[(b + a*Cos[d + e*x] + c*Sin[d + e*x])/(b + Sqrt[a^2 + c^2])])
 

3.5.49.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3598
Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_ 
)]], x_Symbol] :> Simp[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + 
b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]   Int[Sqrt[a/(a + S 
qrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]/(a + Sqrt[b^2 + c^2]))*Cos[d + e*x - Arc 
Tan[b, c]]], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] 
 && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]
 

rule 3646
Int[sec[(d_.) + (e_.)*(x_)]^(n_.)*((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)] + 
(c_.)*tan[(d_.) + (e_.)*(x_)])^(m_), x_Symbol] :> Simp[Sec[d + e*x]^n*((b + 
 a*Cos[d + e*x] + c*Sin[d + e*x])^n/(a + b*Sec[d + e*x] + c*Tan[d + e*x])^n 
)   Int[1/(b + a*Cos[d + e*x] + c*Sin[d + e*x])^n, x], x] /; FreeQ[{a, b, c 
, d, e}, x] && EqQ[m + n, 0] &&  !IntegerQ[n]
 
3.5.49.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 26.93 (sec) , antiderivative size = 2660, normalized size of antiderivative = 22.54

method result size
risch \(\text {Expression too large to display}\) \(2660\)
default \(\text {Expression too large to display}\) \(12922\)

input
int((a+b*sec(e*x+d)+c*tan(e*x+d))^(1/2)/sec(e*x+d)^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
I*(-I*exp(I*(e*x+d))^2*c+a*exp(I*(e*x+d))^2+2*b*exp(I*(e*x+d))+I*c+a)/e/(e 
xp(I*(e*x+d))*(-I*exp(I*(e*x+d))^2*c+a*exp(I*(e*x+d))^2+2*b*exp(I*(e*x+d)) 
+I*c+a))^(1/2)/(exp(RootOf(_Z^2+1,index=1)*(e*x+d))/(exp(RootOf(_Z^2+1,ind 
ex=1)*(e*x+d))^2+1))^(1/2)*(-(RootOf(_Z^2+1,index=1)*exp(RootOf(_Z^2+1,ind 
ex=1)*(e*x+d))^2*c-exp(RootOf(_Z^2+1,index=1)*(e*x+d))^2*a-2*b*exp(RootOf( 
_Z^2+1,index=1)*(e*x+d))-RootOf(_Z^2+1,index=1)*c-a)/(exp(RootOf(_Z^2+1,in 
dex=1)*(e*x+d))^2+1))^(1/2)*(-(RootOf(_Z^2+1,index=1)*exp(RootOf(_Z^2+1,in 
dex=1)*(e*x+d))^2*c-exp(RootOf(_Z^2+1,index=1)*(e*x+d))^2*a-2*b*exp(RootOf 
(_Z^2+1,index=1)*(e*x+d))-RootOf(_Z^2+1,index=1)*c-a)*(exp(RootOf(_Z^2+1,i 
ndex=1)*(e*x+d))^2+1))^(1/2)/(RootOf(_Z^2+1,index=1)*exp(RootOf(_Z^2+1,ind 
ex=1)*(e*x+d))^2*c-exp(RootOf(_Z^2+1,index=1)*(e*x+d))^2*a-2*b*exp(RootOf( 
_Z^2+1,index=1)*(e*x+d))-RootOf(_Z^2+1,index=1)*c-a)*(exp(RootOf(_Z^2+1,in 
dex=1)*(e*x+d))*(-RootOf(_Z^2+1,index=1)*exp(RootOf(_Z^2+1,index=1)*(e*x+d 
))^2*c+exp(RootOf(_Z^2+1,index=1)*(e*x+d))^2*a+2*b*exp(RootOf(_Z^2+1,index 
=1)*(e*x+d))+RootOf(_Z^2+1,index=1)*c+a))^(1/2)/((-RootOf(_Z^2+1,index=1)* 
exp(RootOf(_Z^2+1,index=1)*(e*x+d))^2*c+exp(RootOf(_Z^2+1,index=1)*(e*x+d) 
)^2*a+2*b*exp(RootOf(_Z^2+1,index=1)*(e*x+d))+RootOf(_Z^2+1,index=1)*c+a)* 
(exp(RootOf(_Z^2+1,index=1)*(e*x+d))^2+1))^(1/2)*2^(1/2)-I/e*(-2*b*(-b+(-a 
^2+b^2-c^2)^(1/2))/(I*c-a)*((exp(I*(e*x+d))+(-b+(-a^2+b^2-c^2)^(1/2))/(I*c 
-a))/(-b+(-a^2+b^2-c^2)^(1/2))*(I*c-a))^(1/2)*((exp(I*(e*x+d))-(b+(-a^2...
 
3.5.49.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 1367, normalized size of antiderivative = 11.58 \[ \int \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{\sqrt {\sec (d+e x)}} \, dx=\text {Too large to display} \]

input
integrate((a+b*sec(e*x+d)+c*tan(e*x+d))^(1/2)/sec(e*x+d)^(1/2),x, algorith 
m="fricas")
 
output
1/3*((-I*a*b + b*c)*sqrt(2*a - 2*I*c)*weierstrassPInverse(-4/3*(3*a^4 - 4* 
a^2*b^2 + 4*b^2*c^2 + 6*I*a*c^3 - 3*c^4 + 2*I*(3*a^3 - 4*a*b^2)*c)/(a^4 + 
2*a^2*c^2 + c^4), 8/27*(9*a^5*b - 8*a^3*b^3 - 27*a*b*c^4 - 9*I*b*c^5 + 2*I 
*(9*a^2*b + 4*b^3)*c^3 - 6*(3*a^3*b - 4*a*b^3)*c^2 + 3*I*(9*a^4*b - 8*a^2* 
b^3)*c)/(a^6 + 3*a^4*c^2 + 3*a^2*c^4 + c^6), 1/3*(2*a*b + 2*I*b*c + 3*(a^2 
 + c^2)*cos(e*x + d) - 3*(-I*a^2 - I*c^2)*sin(e*x + d))/(a^2 + c^2)) + (I* 
a*b + b*c)*sqrt(2*a + 2*I*c)*weierstrassPInverse(-4/3*(3*a^4 - 4*a^2*b^2 + 
 4*b^2*c^2 - 6*I*a*c^3 - 3*c^4 - 2*I*(3*a^3 - 4*a*b^2)*c)/(a^4 + 2*a^2*c^2 
 + c^4), 8/27*(9*a^5*b - 8*a^3*b^3 - 27*a*b*c^4 + 9*I*b*c^5 - 2*I*(9*a^2*b 
 + 4*b^3)*c^3 - 6*(3*a^3*b - 4*a*b^3)*c^2 - 3*I*(9*a^4*b - 8*a^2*b^3)*c)/( 
a^6 + 3*a^4*c^2 + 3*a^2*c^4 + c^6), 1/3*(2*a*b - 2*I*b*c + 3*(a^2 + c^2)*c 
os(e*x + d) - 3*(I*a^2 + I*c^2)*sin(e*x + d))/(a^2 + c^2)) - 3*(-I*a^2 - I 
*c^2)*sqrt(2*a - 2*I*c)*weierstrassZeta(-4/3*(3*a^4 - 4*a^2*b^2 + 4*b^2*c^ 
2 + 6*I*a*c^3 - 3*c^4 + 2*I*(3*a^3 - 4*a*b^2)*c)/(a^4 + 2*a^2*c^2 + c^4), 
8/27*(9*a^5*b - 8*a^3*b^3 - 27*a*b*c^4 - 9*I*b*c^5 + 2*I*(9*a^2*b + 4*b^3) 
*c^3 - 6*(3*a^3*b - 4*a*b^3)*c^2 + 3*I*(9*a^4*b - 8*a^2*b^3)*c)/(a^6 + 3*a 
^4*c^2 + 3*a^2*c^4 + c^6), weierstrassPInverse(-4/3*(3*a^4 - 4*a^2*b^2 + 4 
*b^2*c^2 + 6*I*a*c^3 - 3*c^4 + 2*I*(3*a^3 - 4*a*b^2)*c)/(a^4 + 2*a^2*c^2 + 
 c^4), 8/27*(9*a^5*b - 8*a^3*b^3 - 27*a*b*c^4 - 9*I*b*c^5 + 2*I*(9*a^2*b + 
 4*b^3)*c^3 - 6*(3*a^3*b - 4*a*b^3)*c^2 + 3*I*(9*a^4*b - 8*a^2*b^3)*c)/...
 
3.5.49.6 Sympy [F]

\[ \int \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{\sqrt {\sec (d+e x)}} \, dx=\int \frac {\sqrt {a + b \sec {\left (d + e x \right )} + c \tan {\left (d + e x \right )}}}{\sqrt {\sec {\left (d + e x \right )}}}\, dx \]

input
integrate((a+b*sec(e*x+d)+c*tan(e*x+d))**(1/2)/sec(e*x+d)**(1/2),x)
 
output
Integral(sqrt(a + b*sec(d + e*x) + c*tan(d + e*x))/sqrt(sec(d + e*x)), x)
 
3.5.49.7 Maxima [F]

\[ \int \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{\sqrt {\sec (d+e x)}} \, dx=\int { \frac {\sqrt {b \sec \left (e x + d\right ) + c \tan \left (e x + d\right ) + a}}{\sqrt {\sec \left (e x + d\right )}} \,d x } \]

input
integrate((a+b*sec(e*x+d)+c*tan(e*x+d))^(1/2)/sec(e*x+d)^(1/2),x, algorith 
m="maxima")
 
output
integrate(sqrt(b*sec(e*x + d) + c*tan(e*x + d) + a)/sqrt(sec(e*x + d)), x)
 
3.5.49.8 Giac [F]

\[ \int \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{\sqrt {\sec (d+e x)}} \, dx=\int { \frac {\sqrt {b \sec \left (e x + d\right ) + c \tan \left (e x + d\right ) + a}}{\sqrt {\sec \left (e x + d\right )}} \,d x } \]

input
integrate((a+b*sec(e*x+d)+c*tan(e*x+d))^(1/2)/sec(e*x+d)^(1/2),x, algorith 
m="giac")
 
output
integrate(sqrt(b*sec(e*x + d) + c*tan(e*x + d) + a)/sqrt(sec(e*x + d)), x)
 
3.5.49.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (d+e x)+c \tan (d+e x)}}{\sqrt {\sec (d+e x)}} \, dx=\int \frac {\sqrt {a+c\,\mathrm {tan}\left (d+e\,x\right )+\frac {b}{\cos \left (d+e\,x\right )}}}{\sqrt {\frac {1}{\cos \left (d+e\,x\right )}}} \,d x \]

input
int((a + c*tan(d + e*x) + b/cos(d + e*x))^(1/2)/(1/cos(d + e*x))^(1/2),x)
 
output
int((a + c*tan(d + e*x) + b/cos(d + e*x))^(1/2)/(1/cos(d + e*x))^(1/2), x)