3.5.70 \(\int \frac {1}{(a+c \cot (d+e x)+b \csc (d+e x))^{3/2} \sin ^{\frac {3}{2}}(d+e x)} \, dx\) [470]

3.5.70.1 Optimal result
3.5.70.2 Mathematica [C] (warning: unable to verify)
3.5.70.3 Rubi [A] (verified)
3.5.70.4 Maple [C] (warning: unable to verify)
3.5.70.5 Fricas [C] (verification not implemented)
3.5.70.6 Sympy [F(-1)]
3.5.70.7 Maxima [F]
3.5.70.8 Giac [F]
3.5.70.9 Mupad [F(-1)]

3.5.70.1 Optimal result

Integrand size = 33, antiderivative size = 240 \[ \int \frac {1}{(a+c \cot (d+e x)+b \csc (d+e x))^{3/2} \sin ^{\frac {3}{2}}(d+e x)} \, dx=-\frac {2 E\left (\frac {1}{2} \left (d+e x-\tan ^{-1}(c,a)\right )|\frac {2 \sqrt {a^2+c^2}}{b+\sqrt {a^2+c^2}}\right ) (b+c \cos (d+e x)+a \sin (d+e x))^2}{\left (a^2-b^2+c^2\right ) e (a+c \cot (d+e x)+b \csc (d+e x))^{3/2} \sin ^{\frac {3}{2}}(d+e x) \sqrt {\frac {b+c \cos (d+e x)+a \sin (d+e x)}{b+\sqrt {a^2+c^2}}}}-\frac {2 (b+c \cos (d+e x)+a \sin (d+e x)) (a \cos (d+e x)-c \sin (d+e x))}{\left (a^2-b^2+c^2\right ) e (a+c \cot (d+e x)+b \csc (d+e x))^{3/2} \sin ^{\frac {3}{2}}(d+e x)} \]

output
-2*(b+c*cos(e*x+d)+a*sin(e*x+d))*(a*cos(e*x+d)-c*sin(e*x+d))/(a^2-b^2+c^2) 
/e/(a+c*cot(e*x+d)+b*csc(e*x+d))^(3/2)/sin(e*x+d)^(3/2)-2*(cos(1/2*d+1/2*e 
*x-1/2*arctan(c,a))^2)^(1/2)/cos(1/2*d+1/2*e*x-1/2*arctan(c,a))*EllipticE( 
sin(1/2*d+1/2*e*x-1/2*arctan(c,a)),2^(1/2)*((a^2+c^2)^(1/2)/(b+(a^2+c^2)^( 
1/2)))^(1/2))*(b+c*cos(e*x+d)+a*sin(e*x+d))^2/(a^2-b^2+c^2)/e/(a+c*cot(e*x 
+d)+b*csc(e*x+d))^(3/2)/sin(e*x+d)^(3/2)/((b+c*cos(e*x+d)+a*sin(e*x+d))/(b 
+(a^2+c^2)^(1/2)))^(1/2)
 
3.5.70.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 17.46 (sec) , antiderivative size = 5959, normalized size of antiderivative = 24.83 \[ \int \frac {1}{(a+c \cot (d+e x)+b \csc (d+e x))^{3/2} \sin ^{\frac {3}{2}}(d+e x)} \, dx=\text {Result too large to show} \]

input
Integrate[1/((a + c*Cot[d + e*x] + b*Csc[d + e*x])^(3/2)*Sin[d + e*x]^(3/2 
)),x]
 
output
Result too large to show
 
3.5.70.3 Rubi [A] (verified)

Time = 0.79 (sec) , antiderivative size = 237, normalized size of antiderivative = 0.99, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {3042, 3643, 3042, 3607, 3042, 3598, 3042, 3132}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sin ^{\frac {3}{2}}(d+e x) (a+b \csc (d+e x)+c \cot (d+e x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (d+e x)^{3/2} (a+b \csc (d+e x)+c \cot (d+e x))^{3/2}}dx\)

\(\Big \downarrow \) 3643

\(\displaystyle \frac {(a \sin (d+e x)+b+c \cos (d+e x))^{3/2} \int \frac {1}{(b+c \cos (d+e x)+a \sin (d+e x))^{3/2}}dx}{\sin ^{\frac {3}{2}}(d+e x) (a+b \csc (d+e x)+c \cot (d+e x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(a \sin (d+e x)+b+c \cos (d+e x))^{3/2} \int \frac {1}{(b+c \cos (d+e x)+a \sin (d+e x))^{3/2}}dx}{\sin ^{\frac {3}{2}}(d+e x) (a+b \csc (d+e x)+c \cot (d+e x))^{3/2}}\)

\(\Big \downarrow \) 3607

\(\displaystyle \frac {(a \sin (d+e x)+b+c \cos (d+e x))^{3/2} \left (-\frac {\int \sqrt {b+c \cos (d+e x)+a \sin (d+e x)}dx}{a^2-b^2+c^2}-\frac {2 (a \cos (d+e x)-c \sin (d+e x))}{e \left (a^2-b^2+c^2\right ) \sqrt {a \sin (d+e x)+b+c \cos (d+e x)}}\right )}{\sin ^{\frac {3}{2}}(d+e x) (a+b \csc (d+e x)+c \cot (d+e x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(a \sin (d+e x)+b+c \cos (d+e x))^{3/2} \left (-\frac {\int \sqrt {b+c \cos (d+e x)+a \sin (d+e x)}dx}{a^2-b^2+c^2}-\frac {2 (a \cos (d+e x)-c \sin (d+e x))}{e \left (a^2-b^2+c^2\right ) \sqrt {a \sin (d+e x)+b+c \cos (d+e x)}}\right )}{\sin ^{\frac {3}{2}}(d+e x) (a+b \csc (d+e x)+c \cot (d+e x))^{3/2}}\)

\(\Big \downarrow \) 3598

\(\displaystyle \frac {(a \sin (d+e x)+b+c \cos (d+e x))^{3/2} \left (-\frac {\sqrt {a \sin (d+e x)+b+c \cos (d+e x)} \int \sqrt {\frac {b}{b+\sqrt {a^2+c^2}}+\frac {\sqrt {a^2+c^2} \cos \left (d+e x-\tan ^{-1}(c,a)\right )}{b+\sqrt {a^2+c^2}}}dx}{\left (a^2-b^2+c^2\right ) \sqrt {\frac {a \sin (d+e x)+b+c \cos (d+e x)}{\sqrt {a^2+c^2}+b}}}-\frac {2 (a \cos (d+e x)-c \sin (d+e x))}{e \left (a^2-b^2+c^2\right ) \sqrt {a \sin (d+e x)+b+c \cos (d+e x)}}\right )}{\sin ^{\frac {3}{2}}(d+e x) (a+b \csc (d+e x)+c \cot (d+e x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(a \sin (d+e x)+b+c \cos (d+e x))^{3/2} \left (-\frac {\sqrt {a \sin (d+e x)+b+c \cos (d+e x)} \int \sqrt {\frac {b}{b+\sqrt {a^2+c^2}}+\frac {\sqrt {a^2+c^2} \sin \left (d+e x-\tan ^{-1}(c,a)+\frac {\pi }{2}\right )}{b+\sqrt {a^2+c^2}}}dx}{\left (a^2-b^2+c^2\right ) \sqrt {\frac {a \sin (d+e x)+b+c \cos (d+e x)}{\sqrt {a^2+c^2}+b}}}-\frac {2 (a \cos (d+e x)-c \sin (d+e x))}{e \left (a^2-b^2+c^2\right ) \sqrt {a \sin (d+e x)+b+c \cos (d+e x)}}\right )}{\sin ^{\frac {3}{2}}(d+e x) (a+b \csc (d+e x)+c \cot (d+e x))^{3/2}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {(a \sin (d+e x)+b+c \cos (d+e x))^{3/2} \left (-\frac {2 \sqrt {a \sin (d+e x)+b+c \cos (d+e x)} E\left (\frac {1}{2} \left (d+e x-\tan ^{-1}(c,a)\right )|\frac {2 \sqrt {a^2+c^2}}{b+\sqrt {a^2+c^2}}\right )}{e \left (a^2-b^2+c^2\right ) \sqrt {\frac {a \sin (d+e x)+b+c \cos (d+e x)}{\sqrt {a^2+c^2}+b}}}-\frac {2 (a \cos (d+e x)-c \sin (d+e x))}{e \left (a^2-b^2+c^2\right ) \sqrt {a \sin (d+e x)+b+c \cos (d+e x)}}\right )}{\sin ^{\frac {3}{2}}(d+e x) (a+b \csc (d+e x)+c \cot (d+e x))^{3/2}}\)

input
Int[1/((a + c*Cot[d + e*x] + b*Csc[d + e*x])^(3/2)*Sin[d + e*x]^(3/2)),x]
 
output
((b + c*Cos[d + e*x] + a*Sin[d + e*x])^(3/2)*((-2*EllipticE[(d + e*x - Arc 
Tan[c, a])/2, (2*Sqrt[a^2 + c^2])/(b + Sqrt[a^2 + c^2])]*Sqrt[b + c*Cos[d 
+ e*x] + a*Sin[d + e*x]])/((a^2 - b^2 + c^2)*e*Sqrt[(b + c*Cos[d + e*x] + 
a*Sin[d + e*x])/(b + Sqrt[a^2 + c^2])]) - (2*(a*Cos[d + e*x] - c*Sin[d + e 
*x]))/((a^2 - b^2 + c^2)*e*Sqrt[b + c*Cos[d + e*x] + a*Sin[d + e*x]])))/(( 
a + c*Cot[d + e*x] + b*Csc[d + e*x])^(3/2)*Sin[d + e*x]^(3/2))
 

3.5.70.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3598
Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_ 
)]], x_Symbol] :> Simp[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + 
b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]   Int[Sqrt[a/(a + S 
qrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]/(a + Sqrt[b^2 + c^2]))*Cos[d + e*x - Arc 
Tan[b, c]]], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] 
 && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]
 

rule 3607
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^ 
(-3/2), x_Symbol] :> Simp[2*((c*Cos[d + e*x] - b*Sin[d + e*x])/(e*(a^2 - b^ 
2 - c^2)*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])), x] + Simp[1/(a^2 - b^ 
2 - c^2)   Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{ 
a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0]
 

rule 3643
Int[((a_.) + csc[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]*(c_.)) 
^(n_)*sin[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[Sin[d + e*x]^n*((a + 
b*Csc[d + e*x] + c*Cot[d + e*x])^n/(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n) 
   Int[(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n, x], x] /; FreeQ[{a, b, c, d 
, e}, x] &&  !IntegerQ[n]
 
3.5.70.4 Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 26.13 (sec) , antiderivative size = 12838, normalized size of antiderivative = 53.49

method result size
default \(\text {Expression too large to display}\) \(12838\)

input
int(1/(a+c*cot(e*x+d)+b*csc(e*x+d))^(3/2)/sin(e*x+d)^(3/2),x,method=_RETUR 
NVERBOSE)
 
output
result too large to display
 
3.5.70.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 1746, normalized size of antiderivative = 7.28 \[ \int \frac {1}{(a+c \cot (d+e x)+b \csc (d+e x))^{3/2} \sin ^{\frac {3}{2}}(d+e x)} \, dx=\text {Too large to display} \]

input
integrate(1/(a+c*cot(e*x+d)+b*csc(e*x+d))^(3/2)/sin(e*x+d)^(3/2),x, algori 
thm="fricas")
 
output
-1/3*((sqrt(2)*(a*b*c + I*b*c^2)*cos(e*x + d) + sqrt(2)*(a^2*b + I*a*b*c)* 
sin(e*x + d) + sqrt(2)*(a*b^2 + I*b^2*c))*sqrt(I*a + c)*weierstrassPInvers 
e(4/3*(3*a^4 - 4*a^2*b^2 + 4*b^2*c^2 + 6*I*a*c^3 - 3*c^4 + 2*I*(3*a^3 - 4* 
a*b^2)*c)/(a^4 + 2*a^2*c^2 + c^4), -8/27*(-9*I*a^5*b + 8*I*a^3*b^3 + 27*I* 
a*b*c^4 - 9*b*c^5 + 2*(9*a^2*b + 4*b^3)*c^3 + 6*I*(3*a^3*b - 4*a*b^3)*c^2 
+ 3*(9*a^4*b - 8*a^2*b^3)*c)/(a^6 + 3*a^4*c^2 + 3*a^2*c^4 + c^6), 1/3*(-2* 
I*a*b + 2*b*c + 3*(a^2 + c^2)*cos(e*x + d) - 3*(I*a^2 + I*c^2)*sin(e*x + d 
))/(a^2 + c^2)) + (sqrt(2)*(a*b*c - I*b*c^2)*cos(e*x + d) + sqrt(2)*(a^2*b 
 - I*a*b*c)*sin(e*x + d) + sqrt(2)*(a*b^2 - I*b^2*c))*sqrt(-I*a + c)*weier 
strassPInverse(4/3*(3*a^4 - 4*a^2*b^2 + 4*b^2*c^2 - 6*I*a*c^3 - 3*c^4 - 2* 
I*(3*a^3 - 4*a*b^2)*c)/(a^4 + 2*a^2*c^2 + c^4), -8/27*(9*I*a^5*b - 8*I*a^3 
*b^3 - 27*I*a*b*c^4 - 9*b*c^5 + 2*(9*a^2*b + 4*b^3)*c^3 - 6*I*(3*a^3*b - 4 
*a*b^3)*c^2 + 3*(9*a^4*b - 8*a^2*b^3)*c)/(a^6 + 3*a^4*c^2 + 3*a^2*c^4 + c^ 
6), 1/3*(2*I*a*b + 2*b*c + 3*(a^2 + c^2)*cos(e*x + d) - 3*(-I*a^2 - I*c^2) 
*sin(e*x + d))/(a^2 + c^2)) + 3*(sqrt(2)*(-I*a^2*c - I*c^3)*cos(e*x + d) + 
 sqrt(2)*(-I*a^3 - I*a*c^2)*sin(e*x + d) + sqrt(2)*(-I*a^2*b - I*b*c^2))*s 
qrt(I*a + c)*weierstrassZeta(4/3*(3*a^4 - 4*a^2*b^2 + 4*b^2*c^2 + 6*I*a*c^ 
3 - 3*c^4 + 2*I*(3*a^3 - 4*a*b^2)*c)/(a^4 + 2*a^2*c^2 + c^4), -8/27*(-9*I* 
a^5*b + 8*I*a^3*b^3 + 27*I*a*b*c^4 - 9*b*c^5 + 2*(9*a^2*b + 4*b^3)*c^3 + 6 
*I*(3*a^3*b - 4*a*b^3)*c^2 + 3*(9*a^4*b - 8*a^2*b^3)*c)/(a^6 + 3*a^4*c^...
 
3.5.70.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+c \cot (d+e x)+b \csc (d+e x))^{3/2} \sin ^{\frac {3}{2}}(d+e x)} \, dx=\text {Timed out} \]

input
integrate(1/(a+c*cot(e*x+d)+b*csc(e*x+d))**(3/2)/sin(e*x+d)**(3/2),x)
 
output
Timed out
 
3.5.70.7 Maxima [F]

\[ \int \frac {1}{(a+c \cot (d+e x)+b \csc (d+e x))^{3/2} \sin ^{\frac {3}{2}}(d+e x)} \, dx=\int { \frac {1}{{\left (c \cot \left (e x + d\right ) + b \csc \left (e x + d\right ) + a\right )}^{\frac {3}{2}} \sin \left (e x + d\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(a+c*cot(e*x+d)+b*csc(e*x+d))^(3/2)/sin(e*x+d)^(3/2),x, algori 
thm="maxima")
 
output
integrate(1/((c*cot(e*x + d) + b*csc(e*x + d) + a)^(3/2)*sin(e*x + d)^(3/2 
)), x)
 
3.5.70.8 Giac [F]

\[ \int \frac {1}{(a+c \cot (d+e x)+b \csc (d+e x))^{3/2} \sin ^{\frac {3}{2}}(d+e x)} \, dx=\int { \frac {1}{{\left (c \cot \left (e x + d\right ) + b \csc \left (e x + d\right ) + a\right )}^{\frac {3}{2}} \sin \left (e x + d\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(a+c*cot(e*x+d)+b*csc(e*x+d))^(3/2)/sin(e*x+d)^(3/2),x, algori 
thm="giac")
 
output
integrate(1/((c*cot(e*x + d) + b*csc(e*x + d) + a)^(3/2)*sin(e*x + d)^(3/2 
)), x)
 
3.5.70.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+c \cot (d+e x)+b \csc (d+e x))^{3/2} \sin ^{\frac {3}{2}}(d+e x)} \, dx=\int \frac {1}{{\sin \left (d+e\,x\right )}^{3/2}\,{\left (a+c\,\mathrm {cot}\left (d+e\,x\right )+\frac {b}{\sin \left (d+e\,x\right )}\right )}^{3/2}} \,d x \]

input
int(1/(sin(d + e*x)^(3/2)*(a + c*cot(d + e*x) + b/sin(d + e*x))^(3/2)),x)
 
output
int(1/(sin(d + e*x)^(3/2)*(a + c*cot(d + e*x) + b/sin(d + e*x))^(3/2)), x)