3.7.87 \(\int e^{n \sin (a+b x)} \cot (a+b x) \, dx\) [687]

3.7.87.1 Optimal result
3.7.87.2 Mathematica [A] (verified)
3.7.87.3 Rubi [A] (verified)
3.7.87.4 Maple [F]
3.7.87.5 Fricas [A] (verification not implemented)
3.7.87.6 Sympy [F]
3.7.87.7 Maxima [A] (verification not implemented)
3.7.87.8 Giac [A] (verification not implemented)
3.7.87.9 Mupad [F(-1)]

3.7.87.1 Optimal result

Integrand size = 17, antiderivative size = 13 \[ \int e^{n \sin (a+b x)} \cot (a+b x) \, dx=\frac {\operatorname {ExpIntegralEi}(n \sin (a+b x))}{b} \]

output
Ei(n*sin(b*x+a))/b
 
3.7.87.2 Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00 \[ \int e^{n \sin (a+b x)} \cot (a+b x) \, dx=\frac {\operatorname {ExpIntegralEi}(n \sin (a+b x))}{b} \]

input
Integrate[E^(n*Sin[a + b*x])*Cot[a + b*x],x]
 
output
ExpIntegralEi[n*Sin[a + b*x]]/b
 
3.7.87.3 Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {4838, 2609}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot (a+b x) e^{n \sin (a+b x)} \, dx\)

\(\Big \downarrow \) 4838

\(\displaystyle \frac {\int e^{n \sin (a+b x)} \csc (a+b x)d\sin (a+b x)}{b}\)

\(\Big \downarrow \) 2609

\(\displaystyle \frac {\operatorname {ExpIntegralEi}(n \sin (a+b x))}{b}\)

input
Int[E^(n*Sin[a + b*x])*Cot[a + b*x],x]
 
output
ExpIntegralEi[n*Sin[a + b*x]]/b
 

3.7.87.3.1 Defintions of rubi rules used

rule 2609
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Si 
mp[(F^(g*(e - c*(f/d)))/d)*ExpIntegralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; F 
reeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]
 

rule 4838
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFacto 
rs[Sin[c*(a + b*x)], x]}, Simp[1/(b*c)   Subst[Int[SubstFor[1/x, Sin[c*(a + 
 b*x)]/d, u, x], x], x, Sin[c*(a + b*x)]/d], x] /; FunctionOfQ[Sin[c*(a + b 
*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && (EqQ[F, Cot] || EqQ[F, cot])
 
3.7.87.4 Maple [F]

\[\int {\mathrm e}^{n \sin \left (x b +a \right )} \cot \left (x b +a \right )d x\]

input
int(exp(n*sin(b*x+a))*cot(b*x+a),x)
 
output
int(exp(n*sin(b*x+a))*cot(b*x+a),x)
 
3.7.87.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00 \[ \int e^{n \sin (a+b x)} \cot (a+b x) \, dx=\frac {{\rm Ei}\left (n \sin \left (b x + a\right )\right )}{b} \]

input
integrate(exp(n*sin(b*x+a))*cot(b*x+a),x, algorithm="fricas")
 
output
Ei(n*sin(b*x + a))/b
 
3.7.87.6 Sympy [F]

\[ \int e^{n \sin (a+b x)} \cot (a+b x) \, dx=\int e^{n \sin {\left (a + b x \right )}} \cot {\left (a + b x \right )}\, dx \]

input
integrate(exp(n*sin(b*x+a))*cot(b*x+a),x)
 
output
Integral(exp(n*sin(a + b*x))*cot(a + b*x), x)
 
3.7.87.7 Maxima [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00 \[ \int e^{n \sin (a+b x)} \cot (a+b x) \, dx=\frac {{\rm Ei}\left (n \sin \left (b x + a\right )\right )}{b} \]

input
integrate(exp(n*sin(b*x+a))*cot(b*x+a),x, algorithm="maxima")
 
output
Ei(n*sin(b*x + a))/b
 
3.7.87.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00 \[ \int e^{n \sin (a+b x)} \cot (a+b x) \, dx=\frac {{\rm Ei}\left (n \sin \left (b x + a\right )\right )}{b} \]

input
integrate(exp(n*sin(b*x+a))*cot(b*x+a),x, algorithm="giac")
 
output
Ei(n*sin(b*x + a))/b
 
3.7.87.9 Mupad [F(-1)]

Timed out. \[ \int e^{n \sin (a+b x)} \cot (a+b x) \, dx=\int \mathrm {cot}\left (a+b\,x\right )\,{\mathrm {e}}^{n\,\sin \left (a+b\,x\right )} \,d x \]

input
int(cot(a + b*x)*exp(n*sin(a + b*x)),x)
 
output
int(cot(a + b*x)*exp(n*sin(a + b*x)), x)