3.2.22 \(\int x^3 \arcsin (a+b x) \, dx\) [122]

3.2.22.1 Optimal result
3.2.22.2 Mathematica [A] (verified)
3.2.22.3 Rubi [A] (verified)
3.2.22.4 Maple [A] (verified)
3.2.22.5 Fricas [A] (verification not implemented)
3.2.22.6 Sympy [B] (verification not implemented)
3.2.22.7 Maxima [B] (verification not implemented)
3.2.22.8 Giac [B] (verification not implemented)
3.2.22.9 Mupad [F(-1)]

3.2.22.1 Optimal result

Integrand size = 10, antiderivative size = 137 \[ \int x^3 \arcsin (a+b x) \, dx=-\frac {7 a x^2 \sqrt {1-(a+b x)^2}}{48 b^2}+\frac {x^3 \sqrt {1-(a+b x)^2}}{16 b}-\frac {\left (4 a \left (16+19 a^2\right )-\left (9+26 a^2\right ) (a+b x)\right ) \sqrt {1-(a+b x)^2}}{96 b^4}-\frac {\left (3+24 a^2+8 a^4\right ) \arcsin (a+b x)}{32 b^4}+\frac {1}{4} x^4 \arcsin (a+b x) \]

output
-1/32*(8*a^4+24*a^2+3)*arcsin(b*x+a)/b^4+1/4*x^4*arcsin(b*x+a)-7/48*a*x^2* 
(1-(b*x+a)^2)^(1/2)/b^2+1/16*x^3*(1-(b*x+a)^2)^(1/2)/b-1/96*(4*a*(19*a^2+1 
6)-(26*a^2+9)*(b*x+a))*(1-(b*x+a)^2)^(1/2)/b^4
 
3.2.22.2 Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.72 \[ \int x^3 \arcsin (a+b x) \, dx=\frac {\sqrt {1-a^2-2 a b x-b^2 x^2} \left (-50 a^3+9 b x+26 a^2 b x+6 b^3 x^3-a \left (55+14 b^2 x^2\right )\right )-3 \left (3+24 a^2+8 a^4-8 b^4 x^4\right ) \arcsin (a+b x)}{96 b^4} \]

input
Integrate[x^3*ArcSin[a + b*x],x]
 
output
(Sqrt[1 - a^2 - 2*a*b*x - b^2*x^2]*(-50*a^3 + 9*b*x + 26*a^2*b*x + 6*b^3*x 
^3 - a*(55 + 14*b^2*x^2)) - 3*(3 + 24*a^2 + 8*a^4 - 8*b^4*x^4)*ArcSin[a + 
b*x])/(96*b^4)
 
3.2.22.3 Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.21, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {5304, 25, 27, 5242, 497, 25, 687, 25, 676, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^3 \arcsin (a+b x) \, dx\)

\(\Big \downarrow \) 5304

\(\displaystyle \frac {\int x^3 \arcsin (a+b x)d(a+b x)}{b}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int -x^3 \arcsin (a+b x)d(a+b x)}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int -b^3 x^3 \arcsin (a+b x)d(a+b x)}{b^4}\)

\(\Big \downarrow \) 5242

\(\displaystyle -\frac {\frac {1}{4} \int \frac {b^4 x^4}{\sqrt {1-(a+b x)^2}}d(a+b x)-\frac {1}{4} b^4 x^4 \arcsin (a+b x)}{b^4}\)

\(\Big \downarrow \) 497

\(\displaystyle -\frac {\frac {1}{4} \left (-\frac {1}{4} \int -\frac {b^2 x^2 \left (4 a^2-7 (a+b x) a+3\right )}{\sqrt {1-(a+b x)^2}}d(a+b x)-\frac {1}{4} b^3 x^3 \sqrt {1-(a+b x)^2}\right )-\frac {1}{4} b^4 x^4 \arcsin (a+b x)}{b^4}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {1}{4} \left (\frac {1}{4} \int \frac {b^2 x^2 \left (4 a^2-7 (a+b x) a+3\right )}{\sqrt {1-(a+b x)^2}}d(a+b x)-\frac {1}{4} b^3 x^3 \sqrt {1-(a+b x)^2}\right )-\frac {1}{4} b^4 x^4 \arcsin (a+b x)}{b^4}\)

\(\Big \downarrow \) 687

\(\displaystyle -\frac {\frac {1}{4} \left (\frac {1}{4} \left (\frac {7}{3} a b^2 x^2 \sqrt {1-(a+b x)^2}-\frac {1}{3} \int \frac {b x \left (a \left (12 a^2+23\right )-\left (26 a^2+9\right ) (a+b x)\right )}{\sqrt {1-(a+b x)^2}}d(a+b x)\right )-\frac {1}{4} b^3 x^3 \sqrt {1-(a+b x)^2}\right )-\frac {1}{4} b^4 x^4 \arcsin (a+b x)}{b^4}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {1}{4} \left (\frac {1}{4} \left (\frac {1}{3} \int -\frac {b x \left (a \left (12 a^2+23\right )-\left (26 a^2+9\right ) (a+b x)\right )}{\sqrt {1-(a+b x)^2}}d(a+b x)+\frac {7}{3} a b^2 x^2 \sqrt {1-(a+b x)^2}\right )-\frac {1}{4} b^3 x^3 \sqrt {1-(a+b x)^2}\right )-\frac {1}{4} b^4 x^4 \arcsin (a+b x)}{b^4}\)

\(\Big \downarrow \) 676

\(\displaystyle -\frac {\frac {1}{4} \left (\frac {1}{4} \left (\frac {1}{3} \left (\frac {3}{2} \left (8 a^4+24 a^2+3\right ) \int \frac {1}{\sqrt {1-(a+b x)^2}}d(a+b x)+2 a \left (19 a^2+16\right ) \sqrt {1-(a+b x)^2}-\frac {1}{2} \left (26 a^2+9\right ) (a+b x) \sqrt {1-(a+b x)^2}\right )+\frac {7}{3} a b^2 x^2 \sqrt {1-(a+b x)^2}\right )-\frac {1}{4} b^3 x^3 \sqrt {1-(a+b x)^2}\right )-\frac {1}{4} b^4 x^4 \arcsin (a+b x)}{b^4}\)

\(\Big \downarrow \) 223

\(\displaystyle -\frac {\frac {1}{4} \left (\frac {1}{4} \left (\frac {1}{3} \left (2 a \left (19 a^2+16\right ) \sqrt {1-(a+b x)^2}-\frac {1}{2} \left (26 a^2+9\right ) (a+b x) \sqrt {1-(a+b x)^2}+\frac {3}{2} \left (8 a^4+24 a^2+3\right ) \arcsin (a+b x)\right )+\frac {7}{3} a b^2 x^2 \sqrt {1-(a+b x)^2}\right )-\frac {1}{4} b^3 x^3 \sqrt {1-(a+b x)^2}\right )-\frac {1}{4} b^4 x^4 \arcsin (a+b x)}{b^4}\)

input
Int[x^3*ArcSin[a + b*x],x]
 
output
-((-1/4*(b^4*x^4*ArcSin[a + b*x]) + (-1/4*(b^3*x^3*Sqrt[1 - (a + b*x)^2]) 
+ ((7*a*b^2*x^2*Sqrt[1 - (a + b*x)^2])/3 + (2*a*(16 + 19*a^2)*Sqrt[1 - (a 
+ b*x)^2] - ((9 + 26*a^2)*(a + b*x)*Sqrt[1 - (a + b*x)^2])/2 + (3*(3 + 24* 
a^2 + 8*a^4)*ArcSin[a + b*x])/2)/3)/4)/4)/b^4)
 

3.2.22.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 497
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
d*(c + d*x)^(n - 1)*((a + b*x^2)^(p + 1)/(b*(n + 2*p + 1))), x] + Simp[1/(b 
*(n + 2*p + 1))   Int[(c + d*x)^(n - 2)*(a + b*x^2)^p*Simp[b*c^2*(n + 2*p + 
 1) - a*d^2*(n - 1) + 2*b*c*d*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, n 
, p}, x] && If[RationalQ[n], GtQ[n, 1], SumSimplerQ[n, -2]] && NeQ[n + 2*p 
+ 1, 0] && IntQuadraticQ[a, 0, b, c, d, n, p, x]
 

rule 676
Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x 
_Symbol] :> Simp[(e*f + d*g)*((a + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + (Sim 
p[e*g*x*((a + c*x^2)^(p + 1)/(c*(2*p + 3))), x] - Simp[(a*e*g - c*d*f*(2*p 
+ 3))/(c*(2*p + 3))   Int[(a + c*x^2)^p, x], x]) /; FreeQ[{a, c, d, e, f, g 
, p}, x] &&  !LeQ[p, -1]
 

rule 687
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[g*(d + e*x)^m*((a + c*x^2)^(p + 1)/(c*(m + 2*p + 2)) 
), x] + Simp[1/(c*(m + 2*p + 2))   Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*Simp 
[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x 
] /; FreeQ[{a, c, d, e, f, g, p}, x] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && 
 (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p]) &&  !(IGtQ[m, 0] && Eq 
Q[f, 0])
 

rule 5242
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(m_.), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 1))), x] - 
Simp[b*c*(n/(e*(m + 1)))   Int[(d + e*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 
1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] 
 && NeQ[m, -1]
 

rule 5304
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m 
_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*A 
rcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.2.22.4 Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.55

method result size
derivativedivides \(\frac {-\arcsin \left (b x +a \right ) a^{3} \left (b x +a \right )+\frac {3 \arcsin \left (b x +a \right ) a^{2} \left (b x +a \right )^{2}}{2}-\arcsin \left (b x +a \right ) a \left (b x +a \right )^{3}+\frac {\arcsin \left (b x +a \right ) \left (b x +a \right )^{4}}{4}+\frac {\left (b x +a \right )^{3} \sqrt {1-\left (b x +a \right )^{2}}}{16}+\frac {3 \left (b x +a \right ) \sqrt {1-\left (b x +a \right )^{2}}}{32}-\frac {3 \arcsin \left (b x +a \right )}{32}-a^{3} \sqrt {1-\left (b x +a \right )^{2}}-\frac {3 a^{2} \left (-\frac {\left (b x +a \right ) \sqrt {1-\left (b x +a \right )^{2}}}{2}+\frac {\arcsin \left (b x +a \right )}{2}\right )}{2}+a \left (-\frac {\left (b x +a \right )^{2} \sqrt {1-\left (b x +a \right )^{2}}}{3}-\frac {2 \sqrt {1-\left (b x +a \right )^{2}}}{3}\right )}{b^{4}}\) \(213\)
default \(\frac {-\arcsin \left (b x +a \right ) a^{3} \left (b x +a \right )+\frac {3 \arcsin \left (b x +a \right ) a^{2} \left (b x +a \right )^{2}}{2}-\arcsin \left (b x +a \right ) a \left (b x +a \right )^{3}+\frac {\arcsin \left (b x +a \right ) \left (b x +a \right )^{4}}{4}+\frac {\left (b x +a \right )^{3} \sqrt {1-\left (b x +a \right )^{2}}}{16}+\frac {3 \left (b x +a \right ) \sqrt {1-\left (b x +a \right )^{2}}}{32}-\frac {3 \arcsin \left (b x +a \right )}{32}-a^{3} \sqrt {1-\left (b x +a \right )^{2}}-\frac {3 a^{2} \left (-\frac {\left (b x +a \right ) \sqrt {1-\left (b x +a \right )^{2}}}{2}+\frac {\arcsin \left (b x +a \right )}{2}\right )}{2}+a \left (-\frac {\left (b x +a \right )^{2} \sqrt {1-\left (b x +a \right )^{2}}}{3}-\frac {2 \sqrt {1-\left (b x +a \right )^{2}}}{3}\right )}{b^{4}}\) \(213\)
parts \(\frac {x^{4} \arcsin \left (b x +a \right )}{4}-\frac {b \left (-\frac {x^{3} \sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{4 b^{2}}-\frac {7 a \left (-\frac {x^{2} \sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{3 b^{2}}-\frac {5 a \left (-\frac {x \sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{2 b^{2}}-\frac {3 a \left (-\frac {\sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{b^{2}}-\frac {a \arctan \left (\frac {\sqrt {b^{2}}\, \left (x +\frac {a}{b}\right )}{\sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}\right )}{b \sqrt {b^{2}}}\right )}{2 b}+\frac {\left (-a^{2}+1\right ) \arctan \left (\frac {\sqrt {b^{2}}\, \left (x +\frac {a}{b}\right )}{\sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}\right )}{2 b^{2} \sqrt {b^{2}}}\right )}{3 b}+\frac {2 \left (-a^{2}+1\right ) \left (-\frac {\sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{b^{2}}-\frac {a \arctan \left (\frac {\sqrt {b^{2}}\, \left (x +\frac {a}{b}\right )}{\sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}\right )}{b \sqrt {b^{2}}}\right )}{3 b^{2}}\right )}{4 b}+\frac {3 \left (-a^{2}+1\right ) \left (-\frac {x \sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{2 b^{2}}-\frac {3 a \left (-\frac {\sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{b^{2}}-\frac {a \arctan \left (\frac {\sqrt {b^{2}}\, \left (x +\frac {a}{b}\right )}{\sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}\right )}{b \sqrt {b^{2}}}\right )}{2 b}+\frac {\left (-a^{2}+1\right ) \arctan \left (\frac {\sqrt {b^{2}}\, \left (x +\frac {a}{b}\right )}{\sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}\right )}{2 b^{2} \sqrt {b^{2}}}\right )}{4 b^{2}}\right )}{4}\) \(515\)

input
int(x^3*arcsin(b*x+a),x,method=_RETURNVERBOSE)
 
output
1/b^4*(-arcsin(b*x+a)*a^3*(b*x+a)+3/2*arcsin(b*x+a)*a^2*(b*x+a)^2-arcsin(b 
*x+a)*a*(b*x+a)^3+1/4*arcsin(b*x+a)*(b*x+a)^4+1/16*(b*x+a)^3*(1-(b*x+a)^2) 
^(1/2)+3/32*(b*x+a)*(1-(b*x+a)^2)^(1/2)-3/32*arcsin(b*x+a)-a^3*(1-(b*x+a)^ 
2)^(1/2)-3/2*a^2*(-1/2*(b*x+a)*(1-(b*x+a)^2)^(1/2)+1/2*arcsin(b*x+a))+a*(- 
1/3*(b*x+a)^2*(1-(b*x+a)^2)^(1/2)-2/3*(1-(b*x+a)^2)^(1/2)))
 
3.2.22.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.68 \[ \int x^3 \arcsin (a+b x) \, dx=\frac {3 \, {\left (8 \, b^{4} x^{4} - 8 \, a^{4} - 24 \, a^{2} - 3\right )} \arcsin \left (b x + a\right ) + {\left (6 \, b^{3} x^{3} - 14 \, a b^{2} x^{2} - 50 \, a^{3} + {\left (26 \, a^{2} + 9\right )} b x - 55 \, a\right )} \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}}{96 \, b^{4}} \]

input
integrate(x^3*arcsin(b*x+a),x, algorithm="fricas")
 
output
1/96*(3*(8*b^4*x^4 - 8*a^4 - 24*a^2 - 3)*arcsin(b*x + a) + (6*b^3*x^3 - 14 
*a*b^2*x^2 - 50*a^3 + (26*a^2 + 9)*b*x - 55*a)*sqrt(-b^2*x^2 - 2*a*b*x - a 
^2 + 1))/b^4
 
3.2.22.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 255 vs. \(2 (119) = 238\).

Time = 0.33 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.86 \[ \int x^3 \arcsin (a+b x) \, dx=\begin {cases} - \frac {a^{4} \operatorname {asin}{\left (a + b x \right )}}{4 b^{4}} - \frac {25 a^{3} \sqrt {- a^{2} - 2 a b x - b^{2} x^{2} + 1}}{48 b^{4}} + \frac {13 a^{2} x \sqrt {- a^{2} - 2 a b x - b^{2} x^{2} + 1}}{48 b^{3}} - \frac {3 a^{2} \operatorname {asin}{\left (a + b x \right )}}{4 b^{4}} - \frac {7 a x^{2} \sqrt {- a^{2} - 2 a b x - b^{2} x^{2} + 1}}{48 b^{2}} - \frac {55 a \sqrt {- a^{2} - 2 a b x - b^{2} x^{2} + 1}}{96 b^{4}} + \frac {x^{4} \operatorname {asin}{\left (a + b x \right )}}{4} + \frac {x^{3} \sqrt {- a^{2} - 2 a b x - b^{2} x^{2} + 1}}{16 b} + \frac {3 x \sqrt {- a^{2} - 2 a b x - b^{2} x^{2} + 1}}{32 b^{3}} - \frac {3 \operatorname {asin}{\left (a + b x \right )}}{32 b^{4}} & \text {for}\: b \neq 0 \\\frac {x^{4} \operatorname {asin}{\left (a \right )}}{4} & \text {otherwise} \end {cases} \]

input
integrate(x**3*asin(b*x+a),x)
 
output
Piecewise((-a**4*asin(a + b*x)/(4*b**4) - 25*a**3*sqrt(-a**2 - 2*a*b*x - b 
**2*x**2 + 1)/(48*b**4) + 13*a**2*x*sqrt(-a**2 - 2*a*b*x - b**2*x**2 + 1)/ 
(48*b**3) - 3*a**2*asin(a + b*x)/(4*b**4) - 7*a*x**2*sqrt(-a**2 - 2*a*b*x 
- b**2*x**2 + 1)/(48*b**2) - 55*a*sqrt(-a**2 - 2*a*b*x - b**2*x**2 + 1)/(9 
6*b**4) + x**4*asin(a + b*x)/4 + x**3*sqrt(-a**2 - 2*a*b*x - b**2*x**2 + 1 
)/(16*b) + 3*x*sqrt(-a**2 - 2*a*b*x - b**2*x**2 + 1)/(32*b**3) - 3*asin(a 
+ b*x)/(32*b**4), Ne(b, 0)), (x**4*asin(a)/4, True))
 
3.2.22.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 333 vs. \(2 (120) = 240\).

Time = 0.28 (sec) , antiderivative size = 333, normalized size of antiderivative = 2.43 \[ \int x^3 \arcsin (a+b x) \, dx=\frac {1}{4} \, x^{4} \arcsin \left (b x + a\right ) + \frac {1}{96} \, {\left (\frac {6 \, \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} x^{3}}{b^{2}} - \frac {14 \, \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} a x^{2}}{b^{3}} + \frac {105 \, a^{4} \arcsin \left (-\frac {b^{2} x + a b}{\sqrt {a^{2} b^{2} - {\left (a^{2} - 1\right )} b^{2}}}\right )}{b^{5}} + \frac {35 \, \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} a^{2} x}{b^{4}} - \frac {90 \, {\left (a^{2} - 1\right )} a^{2} \arcsin \left (-\frac {b^{2} x + a b}{\sqrt {a^{2} b^{2} - {\left (a^{2} - 1\right )} b^{2}}}\right )}{b^{5}} - \frac {105 \, \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} a^{3}}{b^{5}} - \frac {9 \, \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left (a^{2} - 1\right )} x}{b^{4}} + \frac {9 \, {\left (a^{2} - 1\right )}^{2} \arcsin \left (-\frac {b^{2} x + a b}{\sqrt {a^{2} b^{2} - {\left (a^{2} - 1\right )} b^{2}}}\right )}{b^{5}} + \frac {55 \, \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left (a^{2} - 1\right )} a}{b^{5}}\right )} b \]

input
integrate(x^3*arcsin(b*x+a),x, algorithm="maxima")
 
output
1/4*x^4*arcsin(b*x + a) + 1/96*(6*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*x^3/b 
^2 - 14*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*a*x^2/b^3 + 105*a^4*arcsin(-(b^ 
2*x + a*b)/sqrt(a^2*b^2 - (a^2 - 1)*b^2))/b^5 + 35*sqrt(-b^2*x^2 - 2*a*b*x 
 - a^2 + 1)*a^2*x/b^4 - 90*(a^2 - 1)*a^2*arcsin(-(b^2*x + a*b)/sqrt(a^2*b^ 
2 - (a^2 - 1)*b^2))/b^5 - 105*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*a^3/b^5 - 
 9*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*(a^2 - 1)*x/b^4 + 9*(a^2 - 1)^2*arcs 
in(-(b^2*x + a*b)/sqrt(a^2*b^2 - (a^2 - 1)*b^2))/b^5 + 55*sqrt(-b^2*x^2 - 
2*a*b*x - a^2 + 1)*(a^2 - 1)*a/b^5)*b
 
3.2.22.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 284 vs. \(2 (120) = 240\).

Time = 0.30 (sec) , antiderivative size = 284, normalized size of antiderivative = 2.07 \[ \int x^3 \arcsin (a+b x) \, dx=-\frac {{\left (b x + a\right )} a^{3} \arcsin \left (b x + a\right )}{b^{4}} - \frac {{\left ({\left (b x + a\right )}^{2} - 1\right )} {\left (b x + a\right )} a \arcsin \left (b x + a\right )}{b^{4}} + \frac {3 \, {\left ({\left (b x + a\right )}^{2} - 1\right )} a^{2} \arcsin \left (b x + a\right )}{2 \, b^{4}} + \frac {3 \, \sqrt {-{\left (b x + a\right )}^{2} + 1} {\left (b x + a\right )} a^{2}}{4 \, b^{4}} - \frac {\sqrt {-{\left (b x + a\right )}^{2} + 1} a^{3}}{b^{4}} + \frac {{\left ({\left (b x + a\right )}^{2} - 1\right )}^{2} \arcsin \left (b x + a\right )}{4 \, b^{4}} - \frac {{\left (b x + a\right )} a \arcsin \left (b x + a\right )}{b^{4}} + \frac {3 \, a^{2} \arcsin \left (b x + a\right )}{4 \, b^{4}} - \frac {{\left (-{\left (b x + a\right )}^{2} + 1\right )}^{\frac {3}{2}} {\left (b x + a\right )}}{16 \, b^{4}} + \frac {{\left (-{\left (b x + a\right )}^{2} + 1\right )}^{\frac {3}{2}} a}{3 \, b^{4}} + \frac {{\left ({\left (b x + a\right )}^{2} - 1\right )} \arcsin \left (b x + a\right )}{2 \, b^{4}} + \frac {5 \, \sqrt {-{\left (b x + a\right )}^{2} + 1} {\left (b x + a\right )}}{32 \, b^{4}} - \frac {\sqrt {-{\left (b x + a\right )}^{2} + 1} a}{b^{4}} + \frac {5 \, \arcsin \left (b x + a\right )}{32 \, b^{4}} \]

input
integrate(x^3*arcsin(b*x+a),x, algorithm="giac")
 
output
-(b*x + a)*a^3*arcsin(b*x + a)/b^4 - ((b*x + a)^2 - 1)*(b*x + a)*a*arcsin( 
b*x + a)/b^4 + 3/2*((b*x + a)^2 - 1)*a^2*arcsin(b*x + a)/b^4 + 3/4*sqrt(-( 
b*x + a)^2 + 1)*(b*x + a)*a^2/b^4 - sqrt(-(b*x + a)^2 + 1)*a^3/b^4 + 1/4*( 
(b*x + a)^2 - 1)^2*arcsin(b*x + a)/b^4 - (b*x + a)*a*arcsin(b*x + a)/b^4 + 
 3/4*a^2*arcsin(b*x + a)/b^4 - 1/16*(-(b*x + a)^2 + 1)^(3/2)*(b*x + a)/b^4 
 + 1/3*(-(b*x + a)^2 + 1)^(3/2)*a/b^4 + 1/2*((b*x + a)^2 - 1)*arcsin(b*x + 
 a)/b^4 + 5/32*sqrt(-(b*x + a)^2 + 1)*(b*x + a)/b^4 - sqrt(-(b*x + a)^2 + 
1)*a/b^4 + 5/32*arcsin(b*x + a)/b^4
 
3.2.22.9 Mupad [F(-1)]

Timed out. \[ \int x^3 \arcsin (a+b x) \, dx=\int x^3\,\mathrm {asin}\left (a+b\,x\right ) \,d x \]

input
int(x^3*asin(a + b*x),x)
 
output
int(x^3*asin(a + b*x), x)