3.2.64 \(\int \frac {x}{\sqrt {a+b \arcsin (c+d x)}} \, dx\) [164]

3.2.64.1 Optimal result
3.2.64.2 Mathematica [C] (verified)
3.2.64.3 Rubi [A] (verified)
3.2.64.4 Maple [A] (verified)
3.2.64.5 Fricas [F(-2)]
3.2.64.6 Sympy [F]
3.2.64.7 Maxima [F]
3.2.64.8 Giac [C] (verification not implemented)
3.2.64.9 Mupad [F(-1)]

3.2.64.1 Optimal result

Integrand size = 16, antiderivative size = 211 \[ \int \frac {x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=-\frac {c \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{\sqrt {b} d^2}+\frac {\sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{2 \sqrt {b} d^2}-\frac {c \sqrt {2 \pi } \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} d^2}-\frac {\sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{2 \sqrt {b} d^2} \]

output
1/2*cos(2*a/b)*FresnelS(2*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2)/Pi^(1/2))*Pi^( 
1/2)/d^2/b^(1/2)-1/2*FresnelC(2*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2)/Pi^(1/2) 
)*sin(2*a/b)*Pi^(1/2)/d^2/b^(1/2)-c*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+ 
b*arcsin(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/d^2/b^(1/2)-c*FresnelS(2^ 
(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2 
)/d^2/b^(1/2)
 
3.2.64.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.47 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.03 \[ \int \frac {x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\frac {\frac {i c e^{-\frac {i a}{b}} \left (\sqrt {-\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},-\frac {i (a+b \arcsin (c+d x))}{b}\right )-e^{\frac {2 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},\frac {i (a+b \arcsin (c+d x))}{b}\right )\right )}{\sqrt {a+b \arcsin (c+d x)}}+\frac {\sqrt {\pi } \left (\cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )-\operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )\right )}{\sqrt {b}}}{2 d^2} \]

input
Integrate[x/Sqrt[a + b*ArcSin[c + d*x]],x]
 
output
((I*c*(Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-I)*(a + b*ArcS 
in[c + d*x]))/b] - E^(((2*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gam 
ma[1/2, (I*(a + b*ArcSin[c + d*x]))/b]))/(E^((I*a)/b)*Sqrt[a + b*ArcSin[c 
+ d*x]]) + (Sqrt[Pi]*(Cos[(2*a)/b]*FresnelS[(2*Sqrt[a + b*ArcSin[c + d*x]] 
)/(Sqrt[b]*Sqrt[Pi])] - FresnelC[(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]* 
Sqrt[Pi])]*Sin[(2*a)/b]))/Sqrt[b])/(2*d^2)
 
3.2.64.3 Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 209, normalized size of antiderivative = 0.99, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5304, 25, 27, 5246, 7267, 7292, 7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\sqrt {a+b \arcsin (c+d x)}} \, dx\)

\(\Big \downarrow \) 5304

\(\displaystyle \frac {\int \frac {x}{\sqrt {a+b \arcsin (c+d x)}}d(c+d x)}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int -\frac {x}{\sqrt {a+b \arcsin (c+d x)}}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int -\frac {d x}{\sqrt {a+b \arcsin (c+d x)}}d(c+d x)}{d^2}\)

\(\Big \downarrow \) 5246

\(\displaystyle -\frac {\int -\frac {d x \sqrt {1-(c+d x)^2}}{\sqrt {a+b \arcsin (c+d x)}}d\arcsin (c+d x)}{d^2}\)

\(\Big \downarrow \) 7267

\(\displaystyle -\frac {2 \int -d x \sqrt {1-(c+d x)^2}d\sqrt {a+b \arcsin (c+d x)}}{b d^2}\)

\(\Big \downarrow \) 7292

\(\displaystyle -\frac {2 \int -d x \cos \left (\frac {a}{b}-\frac {a+b \arcsin (c+d x)}{b}\right )d\sqrt {a+b \arcsin (c+d x)}}{b d^2}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {2 \int \left (c \cos \left (\frac {a}{b}-\frac {a+b \arcsin (c+d x)}{b}\right )+\frac {1}{2} \sin \left (\frac {2 a}{b}-\frac {2 (a+b \arcsin (c+d x))}{b}\right )\right )d\sqrt {a+b \arcsin (c+d x)}}{b d^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \left (\frac {1}{4} \sqrt {\pi } \sqrt {b} \sin \left (\frac {2 a}{b}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )+\sqrt {\frac {\pi }{2}} \sqrt {b} c \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )+\sqrt {\frac {\pi }{2}} \sqrt {b} c \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )-\frac {1}{4} \sqrt {\pi } \sqrt {b} \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )\right )}{b d^2}\)

input
Int[x/Sqrt[a + b*ArcSin[c + d*x]],x]
 
output
(-2*(Sqrt[b]*c*Sqrt[Pi/2]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[ 
c + d*x]])/Sqrt[b]] - (Sqrt[b]*Sqrt[Pi]*Cos[(2*a)/b]*FresnelS[(2*Sqrt[a + 
b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])])/4 + Sqrt[b]*c*Sqrt[Pi/2]*FresnelS 
[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b] + (Sqrt[b]*Sqr 
t[Pi]*FresnelC[(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])]*Sin[(2* 
a)/b])/4))/(b*d^2)
 

3.2.64.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5246
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_.) + (e_.)*(x_))^(m_.), x_S 
ymbol] :> Simp[1/c^(m + 1)   Subst[Int[(a + b*x)^n*Cos[x]*(c*d + e*Sin[x])^ 
m, x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[m, 0]
 

rule 5304
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m 
_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*A 
rcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.2.64.4 Maple [A] (verified)

Time = 1.00 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.85

method result size
default \(-\frac {\sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \left (2 \sqrt {2}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) c -2 \sqrt {2}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) c +\cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {2}{b}}\, b}\right )+\sin \left (\frac {2 a}{b}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {2}{b}}\, b}\right )\right )}{2 d^{2}}\) \(179\)

input
int(x/(a+b*arcsin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/2/d^2*(-1/b)^(1/2)*Pi^(1/2)*(2*2^(1/2)*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/ 
2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*c-2*2^(1/2)*sin(a/b)*FresnelS 
(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*c+cos(2*a/b)*F 
resnelS(2*2^(1/2)/Pi^(1/2)/(-2/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)+sin(2 
*a/b)*FresnelC(2*2^(1/2)/Pi^(1/2)/(-2/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b 
))
 
3.2.64.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(x/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.2.64.6 Sympy [F]

\[ \int \frac {x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\int \frac {x}{\sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}}\, dx \]

input
integrate(x/(a+b*asin(d*x+c))**(1/2),x)
 
output
Integral(x/sqrt(a + b*asin(c + d*x)), x)
 
3.2.64.7 Maxima [F]

\[ \int \frac {x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\int { \frac {x}{\sqrt {b \arcsin \left (d x + c\right ) + a}} \,d x } \]

input
integrate(x/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(x/sqrt(b*arcsin(d*x + c) + a), x)
 
3.2.64.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.49 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.45 \[ \int \frac {x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\frac {\sqrt {\pi } c \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b}\right )}}{d^{2} {\left (\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} + \frac {\sqrt {\pi } c \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b}\right )}}{d^{2} {\left (-\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} + \frac {i \, \sqrt {\pi } \operatorname {erf}\left (-\frac {\sqrt {b \arcsin \left (d x + c\right ) + a}}{\sqrt {b}} + \frac {i \, \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {b}}{{\left | b \right |}}\right ) e^{\left (-\frac {2 i \, a}{b}\right )}}{4 \, d^{2} {\left (\sqrt {b} - \frac {i \, b^{\frac {3}{2}}}{{\left | b \right |}}\right )}} - \frac {i \, \sqrt {\pi } \operatorname {erf}\left (-\frac {\sqrt {b \arcsin \left (d x + c\right ) + a}}{\sqrt {b}} - \frac {i \, \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {b}}{{\left | b \right |}}\right ) e^{\left (\frac {2 i \, a}{b}\right )}}{4 \, \sqrt {b} d^{2} {\left (\frac {i \, b}{{\left | b \right |}} + 1\right )}} \]

input
integrate(x/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="giac")
 
output
sqrt(pi)*c*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1 
/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/(d^2*(I*s 
qrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) + sqrt(pi)*c*erf(1/2*I*sqrt 
(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d 
*x + c) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/(d^2*(-I*sqrt(2)*b/sqrt(abs(b)) + 
sqrt(2)*sqrt(abs(b)))) + 1/4*I*sqrt(pi)*erf(-sqrt(b*arcsin(d*x + c) + a)/s 
qrt(b) + I*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-2*I*a/b)/(d^2*( 
sqrt(b) - I*b^(3/2)/abs(b))) - 1/4*I*sqrt(pi)*erf(-sqrt(b*arcsin(d*x + c) 
+ a)/sqrt(b) - I*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/( 
sqrt(b)*d^2*(I*b/abs(b) + 1))
 
3.2.64.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\int \frac {x}{\sqrt {a+b\,\mathrm {asin}\left (c+d\,x\right )}} \,d x \]

input
int(x/(a + b*asin(c + d*x))^(1/2),x)
 
output
int(x/(a + b*asin(c + d*x))^(1/2), x)