3.2.71 \(\int \frac {1}{(a+b \arcsin (c+d x))^{7/2}} \, dx\) [171]

3.2.71.1 Optimal result
3.2.71.2 Mathematica [C] (verified)
3.2.71.3 Rubi [A] (verified)
3.2.71.4 Maple [B] (verified)
3.2.71.5 Fricas [F(-2)]
3.2.71.6 Sympy [F]
3.2.71.7 Maxima [F]
3.2.71.8 Giac [F]
3.2.71.9 Mupad [F(-1)]

3.2.71.1 Optimal result

Integrand size = 14, antiderivative size = 218 \[ \int \frac {1}{(a+b \arcsin (c+d x))^{7/2}} \, dx=-\frac {2 \sqrt {1-(c+d x)^2}}{5 b d (a+b \arcsin (c+d x))^{5/2}}+\frac {4 (c+d x)}{15 b^2 d (a+b \arcsin (c+d x))^{3/2}}+\frac {8 \sqrt {1-(c+d x)^2}}{15 b^3 d \sqrt {a+b \arcsin (c+d x)}}+\frac {8 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}-\frac {8 \sqrt {2 \pi } \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{15 b^{7/2} d} \]

output
4/15*(d*x+c)/b^2/d/(a+b*arcsin(d*x+c))^(3/2)+8/15*cos(a/b)*FresnelS(2^(1/2 
)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(7/2)/d-8 
/15*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)* 
2^(1/2)*Pi^(1/2)/b^(7/2)/d-2/5*(1-(d*x+c)^2)^(1/2)/b/d/(a+b*arcsin(d*x+c)) 
^(5/2)+8/15*(1-(d*x+c)^2)^(1/2)/b^3/d/(a+b*arcsin(d*x+c))^(1/2)
 
3.2.71.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.38 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.32 \[ \int \frac {1}{(a+b \arcsin (c+d x))^{7/2}} \, dx=\frac {-6 b^2 e^{i \arcsin (c+d x)}+4 e^{-\frac {i a}{b}} (a+b \arcsin (c+d x)) \left (e^{\frac {i (a+b \arcsin (c+d x))}{b}} (2 a+b (-i+2 \arcsin (c+d x)))-2 i b \left (-\frac {i (a+b \arcsin (c+d x))}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {i (a+b \arcsin (c+d x))}{b}\right )\right )+e^{-i \arcsin (c+d x)} \left (8 a^2+4 a b (i+4 \arcsin (c+d x))+2 b^2 \left (-3+2 i \arcsin (c+d x)+4 \arcsin (c+d x)^2\right )-8 e^{\frac {i (a+b \arcsin (c+d x))}{b}} (a+b \arcsin (c+d x))^2 \sqrt {\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},\frac {i (a+b \arcsin (c+d x))}{b}\right )\right )}{30 b^3 d (a+b \arcsin (c+d x))^{5/2}} \]

input
Integrate[(a + b*ArcSin[c + d*x])^(-7/2),x]
 
output
(-6*b^2*E^(I*ArcSin[c + d*x]) + (4*(a + b*ArcSin[c + d*x])*(E^((I*(a + b*A 
rcSin[c + d*x]))/b)*(2*a + b*(-I + 2*ArcSin[c + d*x])) - (2*I)*b*(((-I)*(a 
 + b*ArcSin[c + d*x]))/b)^(3/2)*Gamma[1/2, ((-I)*(a + b*ArcSin[c + d*x]))/ 
b]))/E^((I*a)/b) + (8*a^2 + 4*a*b*(I + 4*ArcSin[c + d*x]) + 2*b^2*(-3 + (2 
*I)*ArcSin[c + d*x] + 4*ArcSin[c + d*x]^2) - 8*E^((I*(a + b*ArcSin[c + d*x 
]))/b)*(a + b*ArcSin[c + d*x])^2*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma 
[1/2, (I*(a + b*ArcSin[c + d*x]))/b])/E^(I*ArcSin[c + d*x]))/(30*b^3*d*(a 
+ b*ArcSin[c + d*x])^(5/2))
 
3.2.71.3 Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.02, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {5302, 5132, 5222, 5132, 5224, 25, 3042, 3787, 25, 3042, 3785, 3786, 3832, 3833}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a+b \arcsin (c+d x))^{7/2}} \, dx\)

\(\Big \downarrow \) 5302

\(\displaystyle \frac {\int \frac {1}{(a+b \arcsin (c+d x))^{7/2}}d(c+d x)}{d}\)

\(\Big \downarrow \) 5132

\(\displaystyle \frac {-\frac {2 \int \frac {c+d x}{\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^{5/2}}d(c+d x)}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 5222

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \int \frac {1}{(a+b \arcsin (c+d x))^{3/2}}d(c+d x)}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 5132

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (-\frac {2 \int \frac {c+d x}{\sqrt {1-(c+d x)^2} \sqrt {a+b \arcsin (c+d x)}}d(c+d x)}{b}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 5224

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (-\frac {2 \int -\frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))}{b^2}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (\frac {2 \int \frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))}{b^2}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (\frac {2 \int \frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))}{b^2}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 3787

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (-\frac {2 \left (-\sin \left (\frac {a}{b}\right ) \int \frac {\cos \left (\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\cos \left (\frac {a}{b}\right ) \int -\frac {\sin \left (\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))\right )}{b^2}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (-\frac {2 \left (\cos \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\sin \left (\frac {a}{b}\right ) \int \frac {\cos \left (\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))\right )}{b^2}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (-\frac {2 \left (\cos \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\sin \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c+d x)}{b}+\frac {\pi }{2}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))\right )}{b^2}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 3785

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (-\frac {2 \left (\cos \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-2 \sin \left (\frac {a}{b}\right ) \int \cos \left (\frac {a+b \arcsin (c+d x)}{b}\right )d\sqrt {a+b \arcsin (c+d x)}\right )}{b^2}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 3786

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (-\frac {2 \left (2 \cos \left (\frac {a}{b}\right ) \int \sin \left (\frac {a+b \arcsin (c+d x)}{b}\right )d\sqrt {a+b \arcsin (c+d x)}-2 \sin \left (\frac {a}{b}\right ) \int \cos \left (\frac {a+b \arcsin (c+d x)}{b}\right )d\sqrt {a+b \arcsin (c+d x)}\right )}{b^2}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 3832

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (-\frac {2 \left (\sqrt {2 \pi } \sqrt {b} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )-2 \sin \left (\frac {a}{b}\right ) \int \cos \left (\frac {a+b \arcsin (c+d x)}{b}\right )d\sqrt {a+b \arcsin (c+d x)}\right )}{b^2}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 3833

\(\displaystyle \frac {-\frac {2 \left (\frac {2 \left (-\frac {2 \left (\sqrt {2 \pi } \sqrt {b} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )-\sqrt {2 \pi } \sqrt {b} \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )\right )}{b^2}-\frac {2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \arcsin (c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {1-(c+d x)^2}}{5 b (a+b \arcsin (c+d x))^{5/2}}}{d}\)

input
Int[(a + b*ArcSin[c + d*x])^(-7/2),x]
 
output
((-2*Sqrt[1 - (c + d*x)^2])/(5*b*(a + b*ArcSin[c + d*x])^(5/2)) - (2*((-2* 
(c + d*x))/(3*b*(a + b*ArcSin[c + d*x])^(3/2)) + (2*((-2*Sqrt[1 - (c + d*x 
)^2])/(b*Sqrt[a + b*ArcSin[c + d*x]]) - (2*(Sqrt[b]*Sqrt[2*Pi]*Cos[a/b]*Fr 
esnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]] - Sqrt[b]*Sqrt[2* 
Pi]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b]))/ 
b^2))/(3*b)))/(5*b))/d
 

3.2.71.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3785
Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> S 
imp[2/d   Subst[Int[Cos[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, 
d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3786
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[2/d 
   Subst[Int[Sin[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f 
}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3787
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Cos 
[(d*e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] + Simp[Sin[( 
d*e - c*f)/d]   Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c, d 
, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]
 

rule 3832
Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 3833
Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 5132
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 - c^2 
*x^2]*((a + b*ArcSin[c*x])^(n + 1)/(b*c*(n + 1))), x] + Simp[c/(b*(n + 1)) 
  Int[x*((a + b*ArcSin[c*x])^(n + 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a 
, b, c}, x] && LtQ[n, -1]
 

rule 5222
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) 
+ (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 - c^ 
2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] - Simp[f*(m/(b*c*(n 
 + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]   Int[(f*x)^(m - 1)*(a + b* 
ArcSin[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2* 
d + e, 0] && LtQ[n, -1]
 

rule 5224
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^ 
2)^(p_.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x 
^2)^p]   Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x], x, 
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] 
 && IGtQ[2*p + 2, 0] && IGtQ[m, 0]
 

rule 5302
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[1/d 
  Subst[Int[(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, 
n}, x]
 
3.2.71.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(623\) vs. \(2(178)=356\).

Time = 0.78 (sec) , antiderivative size = 624, normalized size of antiderivative = 2.86

method result size
default \(\frac {-\frac {8 \arcsin \left (d x +c \right )^{2} \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b^{2}}{15}-\frac {8 \arcsin \left (d x +c \right )^{2} \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b^{2}}{15}-\frac {16 \arcsin \left (d x +c \right ) \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, a b}{15}-\frac {16 \arcsin \left (d x +c \right ) \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, a b}{15}-\frac {8 \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, a^{2}}{15}-\frac {8 \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, a^{2}}{15}+\frac {8 \arcsin \left (d x +c \right )^{2} \cos \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) b^{2}}{15}+\frac {16 \arcsin \left (d x +c \right ) \cos \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) a b}{15}-\frac {4 \arcsin \left (d x +c \right ) \sin \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) b^{2}}{15}+\frac {8 \cos \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) a^{2}}{15}-\frac {2 \cos \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) b^{2}}{5}-\frac {4 \sin \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) a b}{15}}{d \,b^{3} \left (a +b \arcsin \left (d x +c \right )\right )^{\frac {5}{2}}}\) \(624\)

input
int(1/(a+b*arcsin(d*x+c))^(7/2),x,method=_RETURNVERBOSE)
 
output
2/15/d/b^3*(-4*arcsin(d*x+c)^2*(a+b*arcsin(d*x+c))^(1/2)*cos(a/b)*FresnelS 
(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2)*Pi^(1/ 
2)*(-1/b)^(1/2)*b^2-4*arcsin(d*x+c)^2*(a+b*arcsin(d*x+c))^(1/2)*sin(a/b)*F 
resnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2) 
*Pi^(1/2)*(-1/b)^(1/2)*b^2-8*arcsin(d*x+c)*(a+b*arcsin(d*x+c))^(1/2)*cos(a 
/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^ 
(1/2)*Pi^(1/2)*(-1/b)^(1/2)*a*b-8*arcsin(d*x+c)*(a+b*arcsin(d*x+c))^(1/2)* 
sin(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/ 
b)*2^(1/2)*Pi^(1/2)*(-1/b)^(1/2)*a*b-4*(a+b*arcsin(d*x+c))^(1/2)*cos(a/b)* 
FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2 
)*Pi^(1/2)*(-1/b)^(1/2)*a^2-4*(a+b*arcsin(d*x+c))^(1/2)*sin(a/b)*FresnelC( 
2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2)*Pi^(1/2 
)*(-1/b)^(1/2)*a^2+4*arcsin(d*x+c)^2*cos(-(a+b*arcsin(d*x+c))/b+a/b)*b^2+8 
*arcsin(d*x+c)*cos(-(a+b*arcsin(d*x+c))/b+a/b)*a*b-2*arcsin(d*x+c)*sin(-(a 
+b*arcsin(d*x+c))/b+a/b)*b^2+4*cos(-(a+b*arcsin(d*x+c))/b+a/b)*a^2-3*cos(- 
(a+b*arcsin(d*x+c))/b+a/b)*b^2-2*sin(-(a+b*arcsin(d*x+c))/b+a/b)*a*b)/(a+b 
*arcsin(d*x+c))^(5/2)
 
3.2.71.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {1}{(a+b \arcsin (c+d x))^{7/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(1/(a+b*arcsin(d*x+c))^(7/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.2.71.6 Sympy [F]

\[ \int \frac {1}{(a+b \arcsin (c+d x))^{7/2}} \, dx=\int \frac {1}{\left (a + b \operatorname {asin}{\left (c + d x \right )}\right )^{\frac {7}{2}}}\, dx \]

input
integrate(1/(a+b*asin(d*x+c))**(7/2),x)
 
output
Integral((a + b*asin(c + d*x))**(-7/2), x)
 
3.2.71.7 Maxima [F]

\[ \int \frac {1}{(a+b \arcsin (c+d x))^{7/2}} \, dx=\int { \frac {1}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate(1/(a+b*arcsin(d*x+c))^(7/2),x, algorithm="maxima")
 
output
integrate((b*arcsin(d*x + c) + a)^(-7/2), x)
 
3.2.71.8 Giac [F]

\[ \int \frac {1}{(a+b \arcsin (c+d x))^{7/2}} \, dx=\int { \frac {1}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate(1/(a+b*arcsin(d*x+c))^(7/2),x, algorithm="giac")
 
output
integrate((b*arcsin(d*x + c) + a)^(-7/2), x)
 
3.2.71.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \arcsin (c+d x))^{7/2}} \, dx=\int \frac {1}{{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^{7/2}} \,d x \]

input
int(1/(a + b*asin(c + d*x))^(7/2),x)
 
output
int(1/(a + b*asin(c + d*x))^(7/2), x)