3.2.83 \(\int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^2} \, dx\) [183]

3.2.83.1 Optimal result
3.2.83.2 Mathematica [A] (verified)
3.2.83.3 Rubi [A] (warning: unable to verify)
3.2.83.4 Maple [A] (verified)
3.2.83.5 Fricas [B] (verification not implemented)
3.2.83.6 Sympy [F]
3.2.83.7 Maxima [F(-2)]
3.2.83.8 Giac [B] (verification not implemented)
3.2.83.9 Mupad [F(-1)]

3.2.83.1 Optimal result

Integrand size = 21, antiderivative size = 51 \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^2} \, dx=-\frac {a+b \arcsin (c+d x)}{d e^2 (c+d x)}-\frac {b \text {arctanh}\left (\sqrt {1-(c+d x)^2}\right )}{d e^2} \]

output
(-a-b*arcsin(d*x+c))/d/e^2/(d*x+c)-b*arctanh((1-(d*x+c)^2)^(1/2))/d/e^2
 
3.2.83.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.88 \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^2} \, dx=-\frac {\frac {a+b \arcsin (c+d x)}{c+d x}+b \text {arctanh}\left (\sqrt {1-(c+d x)^2}\right )}{d e^2} \]

input
Integrate[(a + b*ArcSin[c + d*x])/(c*e + d*e*x)^2,x]
 
output
-(((a + b*ArcSin[c + d*x])/(c + d*x) + b*ArcTanh[Sqrt[1 - (c + d*x)^2]])/( 
d*e^2))
 
3.2.83.3 Rubi [A] (warning: unable to verify)

Time = 0.26 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.86, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {5304, 27, 5138, 243, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^2} \, dx\)

\(\Big \downarrow \) 5304

\(\displaystyle \frac {\int \frac {a+b \arcsin (c+d x)}{e^2 (c+d x)^2}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a+b \arcsin (c+d x)}{(c+d x)^2}d(c+d x)}{d e^2}\)

\(\Big \downarrow \) 5138

\(\displaystyle \frac {b \int \frac {1}{(c+d x) \sqrt {1-(c+d x)^2}}d(c+d x)-\frac {a+b \arcsin (c+d x)}{c+d x}}{d e^2}\)

\(\Big \downarrow \) 243

\(\displaystyle \frac {\frac {1}{2} b \int \frac {1}{\sqrt {-c-d x+1} (c+d x)^2}d(c+d x)^2-\frac {a+b \arcsin (c+d x)}{c+d x}}{d e^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {-b \int \frac {1}{1-(c+d x)^4}d\sqrt {-c-d x+1}-\frac {a+b \arcsin (c+d x)}{c+d x}}{d e^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\frac {a+b \arcsin (c+d x)}{c+d x}-b \text {arctanh}\left (\sqrt {-c-d x+1}\right )}{d e^2}\)

input
Int[(a + b*ArcSin[c + d*x])/(c*e + d*e*x)^2,x]
 
output
(-((a + b*ArcSin[c + d*x])/(c + d*x)) - b*ArcTanh[Sqrt[1 - c - d*x]])/(d*e 
^2)
 

3.2.83.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 5138
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n 
/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2 
*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 5304
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m 
_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*A 
rcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.2.83.4 Maple [A] (verified)

Time = 0.23 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.10

method result size
derivativedivides \(\frac {-\frac {a}{e^{2} \left (d x +c \right )}+\frac {b \left (-\frac {\arcsin \left (d x +c \right )}{d x +c}-\operatorname {arctanh}\left (\frac {1}{\sqrt {1-\left (d x +c \right )^{2}}}\right )\right )}{e^{2}}}{d}\) \(56\)
default \(\frac {-\frac {a}{e^{2} \left (d x +c \right )}+\frac {b \left (-\frac {\arcsin \left (d x +c \right )}{d x +c}-\operatorname {arctanh}\left (\frac {1}{\sqrt {1-\left (d x +c \right )^{2}}}\right )\right )}{e^{2}}}{d}\) \(56\)
parts \(-\frac {a}{e^{2} \left (d x +c \right ) d}+\frac {b \left (-\frac {\arcsin \left (d x +c \right )}{d x +c}-\operatorname {arctanh}\left (\frac {1}{\sqrt {1-\left (d x +c \right )^{2}}}\right )\right )}{e^{2} d}\) \(58\)

input
int((a+b*arcsin(d*x+c))/(d*e*x+c*e)^2,x,method=_RETURNVERBOSE)
 
output
1/d*(-a/e^2/(d*x+c)+b/e^2*(-1/(d*x+c)*arcsin(d*x+c)-arctanh(1/(1-(d*x+c)^2 
)^(1/2))))
 
3.2.83.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 101 vs. \(2 (49) = 98\).

Time = 0.27 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.98 \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^2} \, dx=-\frac {2 \, b \arcsin \left (d x + c\right ) + {\left (b d x + b c\right )} \log \left (\sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1} + 1\right ) - {\left (b d x + b c\right )} \log \left (\sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1} - 1\right ) + 2 \, a}{2 \, {\left (d^{2} e^{2} x + c d e^{2}\right )}} \]

input
integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^2,x, algorithm="fricas")
 
output
-1/2*(2*b*arcsin(d*x + c) + (b*d*x + b*c)*log(sqrt(-d^2*x^2 - 2*c*d*x - c^ 
2 + 1) + 1) - (b*d*x + b*c)*log(sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1) - 1) + 
2*a)/(d^2*e^2*x + c*d*e^2)
 
3.2.83.6 Sympy [F]

\[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^2} \, dx=\frac {\int \frac {a}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx + \int \frac {b \operatorname {asin}{\left (c + d x \right )}}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx}{e^{2}} \]

input
integrate((a+b*asin(d*x+c))/(d*e*x+c*e)**2,x)
 
output
(Integral(a/(c**2 + 2*c*d*x + d**2*x**2), x) + Integral(b*asin(c + d*x)/(c 
**2 + 2*c*d*x + d**2*x**2), x))/e**2
 
3.2.83.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.83.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 108 vs. \(2 (49) = 98\).

Time = 0.30 (sec) , antiderivative size = 108, normalized size of antiderivative = 2.12 \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^2} \, dx=-\frac {1}{2} \, b d e^{2} {\left (\frac {\log \left (\sqrt {-\frac {{\left (d e x + c e\right )}^{2}}{e^{2}} + 1} + 1\right ) - \log \left (-\sqrt {-\frac {{\left (d e x + c e\right )}^{2}}{e^{2}} + 1} + 1\right )}{d^{2} e^{4}} + \frac {2 \, \arcsin \left (d x + c\right )}{{\left (d e x + c e\right )} d^{2} e^{3}}\right )} - \frac {a}{{\left (d e x + c e\right )} d e} \]

input
integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^2,x, algorithm="giac")
 
output
-1/2*b*d*e^2*((log(sqrt(-(d*e*x + c*e)^2/e^2 + 1) + 1) - log(-sqrt(-(d*e*x 
 + c*e)^2/e^2 + 1) + 1))/(d^2*e^4) + 2*arcsin(d*x + c)/((d*e*x + c*e)*d^2* 
e^3)) - a/((d*e*x + c*e)*d*e)
 
3.2.83.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^2} \, dx=\int \frac {a+b\,\mathrm {asin}\left (c+d\,x\right )}{{\left (c\,e+d\,e\,x\right )}^2} \,d x \]

input
int((a + b*asin(c + d*x))/(c*e + d*e*x)^2,x)
 
output
int((a + b*asin(c + d*x))/(c*e + d*e*x)^2, x)