3.2.91 \(\int (c e+d e x) (a+b \arcsin (c+d x))^2 \, dx\) [191]

3.2.91.1 Optimal result
3.2.91.2 Mathematica [A] (verified)
3.2.91.3 Rubi [A] (verified)
3.2.91.4 Maple [A] (verified)
3.2.91.5 Fricas [A] (verification not implemented)
3.2.91.6 Sympy [B] (verification not implemented)
3.2.91.7 Maxima [F]
3.2.91.8 Giac [A] (verification not implemented)
3.2.91.9 Mupad [F(-1)]

3.2.91.1 Optimal result

Integrand size = 21, antiderivative size = 105 \[ \int (c e+d e x) (a+b \arcsin (c+d x))^2 \, dx=-\frac {b^2 e (c+d x)^2}{4 d}+\frac {b e (c+d x) \sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))}{2 d}-\frac {e (a+b \arcsin (c+d x))^2}{4 d}+\frac {e (c+d x)^2 (a+b \arcsin (c+d x))^2}{2 d} \]

output
-1/4*b^2*e*(d*x+c)^2/d-1/4*e*(a+b*arcsin(d*x+c))^2/d+1/2*e*(d*x+c)^2*(a+b* 
arcsin(d*x+c))^2/d+1/2*b*e*(d*x+c)*(a+b*arcsin(d*x+c))*(1-(d*x+c)^2)^(1/2) 
/d
 
3.2.91.2 Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.82 \[ \int (c e+d e x) (a+b \arcsin (c+d x))^2 \, dx=-\frac {e \left (b^2 (c+d x)^2-2 b (c+d x) \sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))+(a+b \arcsin (c+d x))^2-2 (c+d x)^2 (a+b \arcsin (c+d x))^2\right )}{4 d} \]

input
Integrate[(c*e + d*e*x)*(a + b*ArcSin[c + d*x])^2,x]
 
output
-1/4*(e*(b^2*(c + d*x)^2 - 2*b*(c + d*x)*Sqrt[1 - (c + d*x)^2]*(a + b*ArcS 
in[c + d*x]) + (a + b*ArcSin[c + d*x])^2 - 2*(c + d*x)^2*(a + b*ArcSin[c + 
 d*x])^2))/d
 
3.2.91.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.93, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {5304, 27, 5138, 5210, 15, 5152}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c e+d e x) (a+b \arcsin (c+d x))^2 \, dx\)

\(\Big \downarrow \) 5304

\(\displaystyle \frac {\int e (c+d x) (a+b \arcsin (c+d x))^2d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e \int (c+d x) (a+b \arcsin (c+d x))^2d(c+d x)}{d}\)

\(\Big \downarrow \) 5138

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^2-b \int \frac {(c+d x)^2 (a+b \arcsin (c+d x))}{\sqrt {1-(c+d x)^2}}d(c+d x)\right )}{d}\)

\(\Big \downarrow \) 5210

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^2-b \left (\frac {1}{2} \int \frac {a+b \arcsin (c+d x)}{\sqrt {1-(c+d x)^2}}d(c+d x)+\frac {1}{2} b \int (c+d x)d(c+d x)-\frac {1}{2} (c+d x) \sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))\right )\right )}{d}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^2-b \left (\frac {1}{2} \int \frac {a+b \arcsin (c+d x)}{\sqrt {1-(c+d x)^2}}d(c+d x)-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) (a+b \arcsin (c+d x))+\frac {1}{4} b (c+d x)^2\right )\right )}{d}\)

\(\Big \downarrow \) 5152

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^2-b \left (-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) (a+b \arcsin (c+d x))+\frac {(a+b \arcsin (c+d x))^2}{4 b}+\frac {1}{4} b (c+d x)^2\right )\right )}{d}\)

input
Int[(c*e + d*e*x)*(a + b*ArcSin[c + d*x])^2,x]
 
output
(e*(((c + d*x)^2*(a + b*ArcSin[c + d*x])^2)/2 - b*((b*(c + d*x)^2)/4 - ((c 
 + d*x)*Sqrt[1 - (c + d*x)^2]*(a + b*ArcSin[c + d*x]))/2 + (a + b*ArcSin[c 
 + d*x])^2/(4*b))))/d
 

3.2.91.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 5138
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n 
/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2 
*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 5152
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_S 
ymbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a 
 + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d 
+ e, 0] && NeQ[n, -1]
 

rule 5210
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + 
 b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2*p 
 + 1)))   Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + S 
imp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f* 
x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; 
FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m 
, 1] && NeQ[m + 2*p + 1, 0]
 

rule 5304
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m 
_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*A 
rcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.2.91.4 Maple [A] (verified)

Time = 0.46 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.39

method result size
derivativedivides \(\frac {\frac {a^{2} e \left (d x +c \right )^{2}}{2}+b^{2} e \left (\frac {\left (\left (d x +c \right )^{2}-1\right ) \arcsin \left (d x +c \right )^{2}}{2}+\frac {\arcsin \left (d x +c \right ) \left (\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}+\arcsin \left (d x +c \right )\right )}{2}-\frac {\arcsin \left (d x +c \right )^{2}}{4}-\frac {\left (d x +c \right )^{2}}{4}\right )+2 e a b \left (\frac {\left (d x +c \right )^{2} \arcsin \left (d x +c \right )}{2}+\frac {\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}}{4}-\frac {\arcsin \left (d x +c \right )}{4}\right )}{d}\) \(146\)
default \(\frac {\frac {a^{2} e \left (d x +c \right )^{2}}{2}+b^{2} e \left (\frac {\left (\left (d x +c \right )^{2}-1\right ) \arcsin \left (d x +c \right )^{2}}{2}+\frac {\arcsin \left (d x +c \right ) \left (\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}+\arcsin \left (d x +c \right )\right )}{2}-\frac {\arcsin \left (d x +c \right )^{2}}{4}-\frac {\left (d x +c \right )^{2}}{4}\right )+2 e a b \left (\frac {\left (d x +c \right )^{2} \arcsin \left (d x +c \right )}{2}+\frac {\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}}{4}-\frac {\arcsin \left (d x +c \right )}{4}\right )}{d}\) \(146\)
parts \(a^{2} e \left (\frac {1}{2} d \,x^{2}+c x \right )+\frac {b^{2} e \left (\frac {\left (\left (d x +c \right )^{2}-1\right ) \arcsin \left (d x +c \right )^{2}}{2}+\frac {\arcsin \left (d x +c \right ) \left (\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}+\arcsin \left (d x +c \right )\right )}{2}-\frac {\arcsin \left (d x +c \right )^{2}}{4}-\frac {\left (d x +c \right )^{2}}{4}\right )}{d}+\frac {2 e a b \left (\frac {\left (d x +c \right )^{2} \arcsin \left (d x +c \right )}{2}+\frac {\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}}{4}-\frac {\arcsin \left (d x +c \right )}{4}\right )}{d}\) \(150\)

input
int((d*e*x+c*e)*(a+b*arcsin(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/d*(1/2*a^2*e*(d*x+c)^2+b^2*e*(1/2*((d*x+c)^2-1)*arcsin(d*x+c)^2+1/2*arcs 
in(d*x+c)*((d*x+c)*(1-(d*x+c)^2)^(1/2)+arcsin(d*x+c))-1/4*arcsin(d*x+c)^2- 
1/4*(d*x+c)^2)+2*e*a*b*(1/2*(d*x+c)^2*arcsin(d*x+c)+1/4*(d*x+c)*(1-(d*x+c) 
^2)^(1/2)-1/4*arcsin(d*x+c)))
 
3.2.91.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.79 \[ \int (c e+d e x) (a+b \arcsin (c+d x))^2 \, dx=\frac {{\left (2 \, a^{2} - b^{2}\right )} d^{2} e x^{2} + 2 \, {\left (2 \, a^{2} - b^{2}\right )} c d e x + {\left (2 \, b^{2} d^{2} e x^{2} + 4 \, b^{2} c d e x + {\left (2 \, b^{2} c^{2} - b^{2}\right )} e\right )} \arcsin \left (d x + c\right )^{2} + 2 \, {\left (2 \, a b d^{2} e x^{2} + 4 \, a b c d e x + {\left (2 \, a b c^{2} - a b\right )} e\right )} \arcsin \left (d x + c\right ) + 2 \, {\left (a b d e x + a b c e + {\left (b^{2} d e x + b^{2} c e\right )} \arcsin \left (d x + c\right )\right )} \sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1}}{4 \, d} \]

input
integrate((d*e*x+c*e)*(a+b*arcsin(d*x+c))^2,x, algorithm="fricas")
 
output
1/4*((2*a^2 - b^2)*d^2*e*x^2 + 2*(2*a^2 - b^2)*c*d*e*x + (2*b^2*d^2*e*x^2 
+ 4*b^2*c*d*e*x + (2*b^2*c^2 - b^2)*e)*arcsin(d*x + c)^2 + 2*(2*a*b*d^2*e* 
x^2 + 4*a*b*c*d*e*x + (2*a*b*c^2 - a*b)*e)*arcsin(d*x + c) + 2*(a*b*d*e*x 
+ a*b*c*e + (b^2*d*e*x + b^2*c*e)*arcsin(d*x + c))*sqrt(-d^2*x^2 - 2*c*d*x 
 - c^2 + 1))/d
 
3.2.91.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 335 vs. \(2 (88) = 176\).

Time = 0.21 (sec) , antiderivative size = 335, normalized size of antiderivative = 3.19 \[ \int (c e+d e x) (a+b \arcsin (c+d x))^2 \, dx=\begin {cases} a^{2} c e x + \frac {a^{2} d e x^{2}}{2} + \frac {a b c^{2} e \operatorname {asin}{\left (c + d x \right )}}{d} + 2 a b c e x \operatorname {asin}{\left (c + d x \right )} + \frac {a b c e \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1}}{2 d} + a b d e x^{2} \operatorname {asin}{\left (c + d x \right )} + \frac {a b e x \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1}}{2} - \frac {a b e \operatorname {asin}{\left (c + d x \right )}}{2 d} + \frac {b^{2} c^{2} e \operatorname {asin}^{2}{\left (c + d x \right )}}{2 d} + b^{2} c e x \operatorname {asin}^{2}{\left (c + d x \right )} - \frac {b^{2} c e x}{2} + \frac {b^{2} c e \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1} \operatorname {asin}{\left (c + d x \right )}}{2 d} + \frac {b^{2} d e x^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}{2} - \frac {b^{2} d e x^{2}}{4} + \frac {b^{2} e x \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1} \operatorname {asin}{\left (c + d x \right )}}{2} - \frac {b^{2} e \operatorname {asin}^{2}{\left (c + d x \right )}}{4 d} & \text {for}\: d \neq 0 \\c e x \left (a + b \operatorname {asin}{\left (c \right )}\right )^{2} & \text {otherwise} \end {cases} \]

input
integrate((d*e*x+c*e)*(a+b*asin(d*x+c))**2,x)
 
output
Piecewise((a**2*c*e*x + a**2*d*e*x**2/2 + a*b*c**2*e*asin(c + d*x)/d + 2*a 
*b*c*e*x*asin(c + d*x) + a*b*c*e*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)/(2* 
d) + a*b*d*e*x**2*asin(c + d*x) + a*b*e*x*sqrt(-c**2 - 2*c*d*x - d**2*x**2 
 + 1)/2 - a*b*e*asin(c + d*x)/(2*d) + b**2*c**2*e*asin(c + d*x)**2/(2*d) + 
 b**2*c*e*x*asin(c + d*x)**2 - b**2*c*e*x/2 + b**2*c*e*sqrt(-c**2 - 2*c*d* 
x - d**2*x**2 + 1)*asin(c + d*x)/(2*d) + b**2*d*e*x**2*asin(c + d*x)**2/2 
- b**2*d*e*x**2/4 + b**2*e*x*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)*asin(c 
+ d*x)/2 - b**2*e*asin(c + d*x)**2/(4*d), Ne(d, 0)), (c*e*x*(a + b*asin(c) 
)**2, True))
 
3.2.91.7 Maxima [F]

\[ \int (c e+d e x) (a+b \arcsin (c+d x))^2 \, dx=\int { {\left (d e x + c e\right )} {\left (b \arcsin \left (d x + c\right ) + a\right )}^{2} \,d x } \]

input
integrate((d*e*x+c*e)*(a+b*arcsin(d*x+c))^2,x, algorithm="maxima")
 
output
1/2*a^2*d*e*x^2 + 1/2*(2*x^2*arcsin(d*x + c) + d*(3*c^2*arcsin(-(d^2*x + c 
*d)/sqrt(c^2*d^2 - (c^2 - 1)*d^2))/d^3 + sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1 
)*x/d^2 - (c^2 - 1)*arcsin(-(d^2*x + c*d)/sqrt(c^2*d^2 - (c^2 - 1)*d^2))/d 
^3 - 3*sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1)*c/d^3))*a*b*d*e + a^2*c*e*x + 2* 
((d*x + c)*arcsin(d*x + c) + sqrt(-(d*x + c)^2 + 1))*a*b*c*e/d + 1/2*(b^2* 
d*e*x^2 + 2*b^2*c*e*x)*arctan2(d*x + c, sqrt(d*x + c + 1)*sqrt(-d*x - c + 
1))^2 + integrate((b^2*d^2*e*x^2 + 2*b^2*c*d*e*x)*sqrt(d*x + c + 1)*sqrt(- 
d*x - c + 1)*arctan2(d*x + c, sqrt(d*x + c + 1)*sqrt(-d*x - c + 1))/(d^2*x 
^2 + 2*c*d*x + c^2 - 1), x)
 
3.2.91.8 Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.75 \[ \int (c e+d e x) (a+b \arcsin (c+d x))^2 \, dx=\frac {{\left ({\left (d x + c\right )}^{2} - 1\right )} b^{2} e \arcsin \left (d x + c\right )^{2}}{2 \, d} + \frac {\sqrt {-{\left (d x + c\right )}^{2} + 1} {\left (d x + c\right )} b^{2} e \arcsin \left (d x + c\right )}{2 \, d} + \frac {{\left ({\left (d x + c\right )}^{2} - 1\right )} a b e \arcsin \left (d x + c\right )}{d} + \frac {b^{2} e \arcsin \left (d x + c\right )^{2}}{4 \, d} + \frac {\sqrt {-{\left (d x + c\right )}^{2} + 1} {\left (d x + c\right )} a b e}{2 \, d} + \frac {{\left ({\left (d x + c\right )}^{2} - 1\right )} a^{2} e}{2 \, d} - \frac {{\left ({\left (d x + c\right )}^{2} - 1\right )} b^{2} e}{4 \, d} + \frac {a b e \arcsin \left (d x + c\right )}{2 \, d} - \frac {b^{2} e}{8 \, d} \]

input
integrate((d*e*x+c*e)*(a+b*arcsin(d*x+c))^2,x, algorithm="giac")
 
output
1/2*((d*x + c)^2 - 1)*b^2*e*arcsin(d*x + c)^2/d + 1/2*sqrt(-(d*x + c)^2 + 
1)*(d*x + c)*b^2*e*arcsin(d*x + c)/d + ((d*x + c)^2 - 1)*a*b*e*arcsin(d*x 
+ c)/d + 1/4*b^2*e*arcsin(d*x + c)^2/d + 1/2*sqrt(-(d*x + c)^2 + 1)*(d*x + 
 c)*a*b*e/d + 1/2*((d*x + c)^2 - 1)*a^2*e/d - 1/4*((d*x + c)^2 - 1)*b^2*e/ 
d + 1/2*a*b*e*arcsin(d*x + c)/d - 1/8*b^2*e/d
 
3.2.91.9 Mupad [F(-1)]

Timed out. \[ \int (c e+d e x) (a+b \arcsin (c+d x))^2 \, dx=\int \left (c\,e+d\,e\,x\right )\,{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^2 \,d x \]

input
int((c*e + d*e*x)*(a + b*asin(c + d*x))^2,x)
 
output
int((c*e + d*e*x)*(a + b*asin(c + d*x))^2, x)