3.3.4 \(\int \frac {(a+b \arcsin (c+d x))^3}{(c e+d e x)^3} \, dx\) [204]

3.3.4.1 Optimal result
3.3.4.2 Mathematica [A] (verified)
3.3.4.3 Rubi [A] (verified)
3.3.4.4 Maple [A] (verified)
3.3.4.5 Fricas [F]
3.3.4.6 Sympy [F]
3.3.4.7 Maxima [F(-1)]
3.3.4.8 Giac [F]
3.3.4.9 Mupad [F(-1)]

3.3.4.1 Optimal result

Integrand size = 23, antiderivative size = 167 \[ \int \frac {(a+b \arcsin (c+d x))^3}{(c e+d e x)^3} \, dx=-\frac {3 i b (a+b \arcsin (c+d x))^2}{2 d e^3}-\frac {3 b \sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^2}{2 d e^3 (c+d x)}-\frac {(a+b \arcsin (c+d x))^3}{2 d e^3 (c+d x)^2}+\frac {3 b^2 (a+b \arcsin (c+d x)) \log \left (1-e^{2 i \arcsin (c+d x)}\right )}{d e^3}-\frac {3 i b^3 \operatorname {PolyLog}\left (2,e^{2 i \arcsin (c+d x)}\right )}{2 d e^3} \]

output
-3/2*I*b*(a+b*arcsin(d*x+c))^2/d/e^3-1/2*(a+b*arcsin(d*x+c))^3/d/e^3/(d*x+ 
c)^2+3*b^2*(a+b*arcsin(d*x+c))*ln(1-(I*(d*x+c)+(1-(d*x+c)^2)^(1/2))^2)/d/e 
^3-3/2*I*b^3*polylog(2,(I*(d*x+c)+(1-(d*x+c)^2)^(1/2))^2)/d/e^3-3/2*b*(a+b 
*arcsin(d*x+c))^2*(1-(d*x+c)^2)^(1/2)/d/e^3/(d*x+c)
 
3.3.4.2 Mathematica [A] (verified)

Time = 1.15 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.49 \[ \int \frac {(a+b \arcsin (c+d x))^3}{(c e+d e x)^3} \, dx=-\frac {3 b^2 \left (a+b (c+d x) \left (i c+i d x+\sqrt {1-c^2-2 c d x-d^2 x^2}\right )\right ) \arcsin (c+d x)^2+b^3 \arcsin (c+d x)^3+3 b \arcsin (c+d x) \left (a \left (a+2 b (c+d x) \sqrt {1-c^2-2 c d x-d^2 x^2}\right )-2 b^2 (c+d x)^2 \log \left (1-e^{2 i \arcsin (c+d x)}\right )\right )+a \left (a \left (a+3 b (c+d x) \sqrt {1-c^2-2 c d x-d^2 x^2}\right )-6 b^2 (c+d x)^2 \log (c+d x)\right )+3 i b^3 (c+d x)^2 \operatorname {PolyLog}\left (2,e^{2 i \arcsin (c+d x)}\right )}{2 d e^3 (c+d x)^2} \]

input
Integrate[(a + b*ArcSin[c + d*x])^3/(c*e + d*e*x)^3,x]
 
output
-1/2*(3*b^2*(a + b*(c + d*x)*(I*c + I*d*x + Sqrt[1 - c^2 - 2*c*d*x - d^2*x 
^2]))*ArcSin[c + d*x]^2 + b^3*ArcSin[c + d*x]^3 + 3*b*ArcSin[c + d*x]*(a*( 
a + 2*b*(c + d*x)*Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2]) - 2*b^2*(c + d*x)^2*L 
og[1 - E^((2*I)*ArcSin[c + d*x])]) + a*(a*(a + 3*b*(c + d*x)*Sqrt[1 - c^2 
- 2*c*d*x - d^2*x^2]) - 6*b^2*(c + d*x)^2*Log[c + d*x]) + (3*I)*b^3*(c + d 
*x)^2*PolyLog[2, E^((2*I)*ArcSin[c + d*x])])/(d*e^3*(c + d*x)^2)
 
3.3.4.3 Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.93, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {5304, 27, 5138, 5186, 5136, 3042, 25, 4200, 25, 2620, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \arcsin (c+d x))^3}{(c e+d e x)^3} \, dx\)

\(\Big \downarrow \) 5304

\(\displaystyle \frac {\int \frac {(a+b \arcsin (c+d x))^3}{e^3 (c+d x)^3}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(a+b \arcsin (c+d x))^3}{(c+d x)^3}d(c+d x)}{d e^3}\)

\(\Big \downarrow \) 5138

\(\displaystyle \frac {\frac {3}{2} b \int \frac {(a+b \arcsin (c+d x))^2}{(c+d x)^2 \sqrt {1-(c+d x)^2}}d(c+d x)-\frac {(a+b \arcsin (c+d x))^3}{2 (c+d x)^2}}{d e^3}\)

\(\Big \downarrow \) 5186

\(\displaystyle \frac {\frac {3}{2} b \left (2 b \int \frac {a+b \arcsin (c+d x)}{c+d x}d(c+d x)-\frac {\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^2}{c+d x}\right )-\frac {(a+b \arcsin (c+d x))^3}{2 (c+d x)^2}}{d e^3}\)

\(\Big \downarrow \) 5136

\(\displaystyle \frac {\frac {3}{2} b \left (2 b \int \frac {\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))}{c+d x}d\arcsin (c+d x)-\frac {\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^2}{c+d x}\right )-\frac {(a+b \arcsin (c+d x))^3}{2 (c+d x)^2}}{d e^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{2} b \left (2 b \int -\left ((a+b \arcsin (c+d x)) \tan \left (\arcsin (c+d x)+\frac {\pi }{2}\right )\right )d\arcsin (c+d x)-\frac {\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^2}{c+d x}\right )-\frac {(a+b \arcsin (c+d x))^3}{2 (c+d x)^2}}{d e^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {3}{2} b \left (-2 b \int (a+b \arcsin (c+d x)) \tan \left (\arcsin (c+d x)+\frac {\pi }{2}\right )d\arcsin (c+d x)-\frac {\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^2}{c+d x}\right )-\frac {(a+b \arcsin (c+d x))^3}{2 (c+d x)^2}}{d e^3}\)

\(\Big \downarrow \) 4200

\(\displaystyle \frac {-\frac {(a+b \arcsin (c+d x))^3}{2 (c+d x)^2}+\frac {3}{2} b \left (-\frac {\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^2}{c+d x}+2 b \left (2 i \int -\frac {e^{2 i \arcsin (c+d x)} (a+b \arcsin (c+d x))}{1-e^{2 i \arcsin (c+d x)}}d\arcsin (c+d x)-\frac {i (a+b \arcsin (c+d x))^2}{2 b}\right )\right )}{d e^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {(a+b \arcsin (c+d x))^3}{2 (c+d x)^2}+\frac {3}{2} b \left (-\frac {\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^2}{c+d x}+2 b \left (-2 i \int \frac {e^{2 i \arcsin (c+d x)} (a+b \arcsin (c+d x))}{1-e^{2 i \arcsin (c+d x)}}d\arcsin (c+d x)-\frac {i (a+b \arcsin (c+d x))^2}{2 b}\right )\right )}{d e^3}\)

\(\Big \downarrow \) 2620

\(\displaystyle \frac {-\frac {(a+b \arcsin (c+d x))^3}{2 (c+d x)^2}+\frac {3}{2} b \left (-\frac {\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^2}{c+d x}+2 b \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arcsin (c+d x)}\right ) (a+b \arcsin (c+d x))-\frac {1}{2} i b \int \log \left (1-e^{2 i \arcsin (c+d x)}\right )d\arcsin (c+d x)\right )-\frac {i (a+b \arcsin (c+d x))^2}{2 b}\right )\right )}{d e^3}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {-\frac {(a+b \arcsin (c+d x))^3}{2 (c+d x)^2}+\frac {3}{2} b \left (-\frac {\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^2}{c+d x}+2 b \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arcsin (c+d x)}\right ) (a+b \arcsin (c+d x))-\frac {1}{4} b \int e^{-2 i \arcsin (c+d x)} \log (-c-d x+1)de^{2 i \arcsin (c+d x)}\right )-\frac {i (a+b \arcsin (c+d x))^2}{2 b}\right )\right )}{d e^3}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {-\frac {(a+b \arcsin (c+d x))^3}{2 (c+d x)^2}+\frac {3}{2} b \left (-\frac {\sqrt {1-(c+d x)^2} (a+b \arcsin (c+d x))^2}{c+d x}+2 b \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arcsin (c+d x)}\right ) (a+b \arcsin (c+d x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arcsin (c+d x)}\right )\right )-\frac {i (a+b \arcsin (c+d x))^2}{2 b}\right )\right )}{d e^3}\)

input
Int[(a + b*ArcSin[c + d*x])^3/(c*e + d*e*x)^3,x]
 
output
(-1/2*(a + b*ArcSin[c + d*x])^3/(c + d*x)^2 + (3*b*(-((Sqrt[1 - (c + d*x)^ 
2]*(a + b*ArcSin[c + d*x])^2)/(c + d*x)) + 2*b*(((-1/2*I)*(a + b*ArcSin[c 
+ d*x])^2)/b - (2*I)*((I/2)*(a + b*ArcSin[c + d*x])*Log[1 - E^((2*I)*ArcSi 
n[c + d*x])] + (b*PolyLog[2, E^((2*I)*ArcSin[c + d*x])])/4))))/2)/(d*e^3)
 

3.3.4.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4200
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol 
] :> Simp[I*((c + d*x)^(m + 1)/(d*(m + 1))), x] - Simp[2*I   Int[(c + d*x)^ 
m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x)))), x] 
, x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]
 

rule 5136
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[( 
a + b*x)^n*Cot[x], x], x, ArcSin[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]
 

rule 5138
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n 
/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2 
*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 5186
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b 
*ArcSin[c*x])^n/(d*f*(m + 1))), x] - Simp[b*c*(n/(f*(m + 1)))*Simp[(d + e*x 
^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*A 
rcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^ 
2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]
 

rule 5304
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m 
_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*A 
rcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.3.4.4 Maple [A] (verified)

Time = 0.91 (sec) , antiderivative size = 324, normalized size of antiderivative = 1.94

method result size
derivativedivides \(\frac {-\frac {a^{3}}{2 e^{3} \left (d x +c \right )^{2}}+\frac {b^{3} \left (-\frac {\arcsin \left (d x +c \right )^{2} \left (-3 i \left (d x +c \right )^{2}+3 \left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}+\arcsin \left (d x +c \right )\right )}{2 \left (d x +c \right )^{2}}+3 \arcsin \left (d x +c \right ) \ln \left (1-i \left (d x +c \right )-\sqrt {1-\left (d x +c \right )^{2}}\right )+3 \arcsin \left (d x +c \right ) \ln \left (1+i \left (d x +c \right )+\sqrt {1-\left (d x +c \right )^{2}}\right )-3 i \arcsin \left (d x +c \right )^{2}-3 i \operatorname {polylog}\left (2, i \left (d x +c \right )+\sqrt {1-\left (d x +c \right )^{2}}\right )-3 i \operatorname {polylog}\left (2, -i \left (d x +c \right )-\sqrt {1-\left (d x +c \right )^{2}}\right )\right )}{e^{3}}+\frac {3 a \,b^{2} \left (-\frac {\arcsin \left (d x +c \right )^{2}}{2 \left (d x +c \right )^{2}}-\frac {\arcsin \left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}}{d x +c}+\ln \left (d x +c \right )\right )}{e^{3}}+\frac {3 a^{2} b \left (-\frac {\arcsin \left (d x +c \right )}{2 \left (d x +c \right )^{2}}-\frac {\sqrt {1-\left (d x +c \right )^{2}}}{2 \left (d x +c \right )}\right )}{e^{3}}}{d}\) \(324\)
default \(\frac {-\frac {a^{3}}{2 e^{3} \left (d x +c \right )^{2}}+\frac {b^{3} \left (-\frac {\arcsin \left (d x +c \right )^{2} \left (-3 i \left (d x +c \right )^{2}+3 \left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}+\arcsin \left (d x +c \right )\right )}{2 \left (d x +c \right )^{2}}+3 \arcsin \left (d x +c \right ) \ln \left (1-i \left (d x +c \right )-\sqrt {1-\left (d x +c \right )^{2}}\right )+3 \arcsin \left (d x +c \right ) \ln \left (1+i \left (d x +c \right )+\sqrt {1-\left (d x +c \right )^{2}}\right )-3 i \arcsin \left (d x +c \right )^{2}-3 i \operatorname {polylog}\left (2, i \left (d x +c \right )+\sqrt {1-\left (d x +c \right )^{2}}\right )-3 i \operatorname {polylog}\left (2, -i \left (d x +c \right )-\sqrt {1-\left (d x +c \right )^{2}}\right )\right )}{e^{3}}+\frac {3 a \,b^{2} \left (-\frac {\arcsin \left (d x +c \right )^{2}}{2 \left (d x +c \right )^{2}}-\frac {\arcsin \left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}}{d x +c}+\ln \left (d x +c \right )\right )}{e^{3}}+\frac {3 a^{2} b \left (-\frac {\arcsin \left (d x +c \right )}{2 \left (d x +c \right )^{2}}-\frac {\sqrt {1-\left (d x +c \right )^{2}}}{2 \left (d x +c \right )}\right )}{e^{3}}}{d}\) \(324\)
parts \(-\frac {a^{3}}{2 e^{3} \left (d x +c \right )^{2} d}+\frac {b^{3} \left (-\frac {\arcsin \left (d x +c \right )^{2} \left (-3 i \left (d x +c \right )^{2}+3 \left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}+\arcsin \left (d x +c \right )\right )}{2 \left (d x +c \right )^{2}}+3 \arcsin \left (d x +c \right ) \ln \left (1-i \left (d x +c \right )-\sqrt {1-\left (d x +c \right )^{2}}\right )+3 \arcsin \left (d x +c \right ) \ln \left (1+i \left (d x +c \right )+\sqrt {1-\left (d x +c \right )^{2}}\right )-3 i \arcsin \left (d x +c \right )^{2}-3 i \operatorname {polylog}\left (2, i \left (d x +c \right )+\sqrt {1-\left (d x +c \right )^{2}}\right )-3 i \operatorname {polylog}\left (2, -i \left (d x +c \right )-\sqrt {1-\left (d x +c \right )^{2}}\right )\right )}{e^{3} d}+\frac {3 a \,b^{2} \left (-\frac {\arcsin \left (d x +c \right )^{2}}{2 \left (d x +c \right )^{2}}-\frac {\arcsin \left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}}{d x +c}+\ln \left (d x +c \right )\right )}{e^{3} d}+\frac {3 a^{2} b \left (-\frac {\arcsin \left (d x +c \right )}{2 \left (d x +c \right )^{2}}-\frac {\sqrt {1-\left (d x +c \right )^{2}}}{2 \left (d x +c \right )}\right )}{e^{3} d}\) \(332\)

input
int((a+b*arcsin(d*x+c))^3/(d*e*x+c*e)^3,x,method=_RETURNVERBOSE)
 
output
1/d*(-1/2*a^3/e^3/(d*x+c)^2+b^3/e^3*(-1/2*arcsin(d*x+c)^2*(-3*I*(d*x+c)^2+ 
3*(d*x+c)*(1-(d*x+c)^2)^(1/2)+arcsin(d*x+c))/(d*x+c)^2+3*arcsin(d*x+c)*ln( 
1-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))+3*arcsin(d*x+c)*ln(1+I*(d*x+c)+(1-(d*x+c) 
^2)^(1/2))-3*I*arcsin(d*x+c)^2-3*I*polylog(2,I*(d*x+c)+(1-(d*x+c)^2)^(1/2) 
)-3*I*polylog(2,-I*(d*x+c)-(1-(d*x+c)^2)^(1/2)))+3*a*b^2/e^3*(-1/2*arcsin( 
d*x+c)^2/(d*x+c)^2-arcsin(d*x+c)*(1-(d*x+c)^2)^(1/2)/(d*x+c)+ln(d*x+c))+3* 
a^2*b/e^3*(-1/2/(d*x+c)^2*arcsin(d*x+c)-1/2/(d*x+c)*(1-(d*x+c)^2)^(1/2)))
 
3.3.4.5 Fricas [F]

\[ \int \frac {(a+b \arcsin (c+d x))^3}{(c e+d e x)^3} \, dx=\int { \frac {{\left (b \arcsin \left (d x + c\right ) + a\right )}^{3}}{{\left (d e x + c e\right )}^{3}} \,d x } \]

input
integrate((a+b*arcsin(d*x+c))^3/(d*e*x+c*e)^3,x, algorithm="fricas")
 
output
integral((b^3*arcsin(d*x + c)^3 + 3*a*b^2*arcsin(d*x + c)^2 + 3*a^2*b*arcs 
in(d*x + c) + a^3)/(d^3*e^3*x^3 + 3*c*d^2*e^3*x^2 + 3*c^2*d*e^3*x + c^3*e^ 
3), x)
 
3.3.4.6 Sympy [F]

\[ \int \frac {(a+b \arcsin (c+d x))^3}{(c e+d e x)^3} \, dx=\frac {\int \frac {a^{3}}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}}\, dx + \int \frac {b^{3} \operatorname {asin}^{3}{\left (c + d x \right )}}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}}\, dx + \int \frac {3 a b^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}}\, dx + \int \frac {3 a^{2} b \operatorname {asin}{\left (c + d x \right )}}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}}\, dx}{e^{3}} \]

input
integrate((a+b*asin(d*x+c))**3/(d*e*x+c*e)**3,x)
 
output
(Integral(a**3/(c**3 + 3*c**2*d*x + 3*c*d**2*x**2 + d**3*x**3), x) + Integ 
ral(b**3*asin(c + d*x)**3/(c**3 + 3*c**2*d*x + 3*c*d**2*x**2 + d**3*x**3), 
 x) + Integral(3*a*b**2*asin(c + d*x)**2/(c**3 + 3*c**2*d*x + 3*c*d**2*x** 
2 + d**3*x**3), x) + Integral(3*a**2*b*asin(c + d*x)/(c**3 + 3*c**2*d*x + 
3*c*d**2*x**2 + d**3*x**3), x))/e**3
 
3.3.4.7 Maxima [F(-1)]

Timed out. \[ \int \frac {(a+b \arcsin (c+d x))^3}{(c e+d e x)^3} \, dx=\text {Timed out} \]

input
integrate((a+b*arcsin(d*x+c))^3/(d*e*x+c*e)^3,x, algorithm="maxima")
 
output
Timed out
 
3.3.4.8 Giac [F]

\[ \int \frac {(a+b \arcsin (c+d x))^3}{(c e+d e x)^3} \, dx=\int { \frac {{\left (b \arcsin \left (d x + c\right ) + a\right )}^{3}}{{\left (d e x + c e\right )}^{3}} \,d x } \]

input
integrate((a+b*arcsin(d*x+c))^3/(d*e*x+c*e)^3,x, algorithm="giac")
 
output
integrate((b*arcsin(d*x + c) + a)^3/(d*e*x + c*e)^3, x)
 
3.3.4.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \arcsin (c+d x))^3}{(c e+d e x)^3} \, dx=\int \frac {{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^3}{{\left (c\,e+d\,e\,x\right )}^3} \,d x \]

input
int((a + b*asin(c + d*x))^3/(c*e + d*e*x)^3,x)
 
output
int((a + b*asin(c + d*x))^3/(c*e + d*e*x)^3, x)