3.3.47 \(\int (c e+d e x) (a+b \arcsin (c+d x))^{3/2} \, dx\) [247]

3.3.47.1 Optimal result
3.3.47.2 Mathematica [C] (verified)
3.3.47.3 Rubi [A] (verified)
3.3.47.4 Maple [A] (verified)
3.3.47.5 Fricas [F(-2)]
3.3.47.6 Sympy [F]
3.3.47.7 Maxima [F]
3.3.47.8 Giac [C] (verification not implemented)
3.3.47.9 Mupad [F(-1)]

3.3.47.1 Optimal result

Integrand size = 23, antiderivative size = 199 \[ \int (c e+d e x) (a+b \arcsin (c+d x))^{3/2} \, dx=\frac {3 b e (c+d x) \sqrt {1-(c+d x)^2} \sqrt {a+b \arcsin (c+d x)}}{8 d}-\frac {e (a+b \arcsin (c+d x))^{3/2}}{4 d}+\frac {e (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}}{2 d}-\frac {3 b^{3/2} e \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{32 d}+\frac {3 b^{3/2} e \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{32 d} \]

output
-1/4*e*(a+b*arcsin(d*x+c))^(3/2)/d+1/2*e*(d*x+c)^2*(a+b*arcsin(d*x+c))^(3/ 
2)/d-3/32*b^(3/2)*e*cos(2*a/b)*FresnelS(2*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2 
)/Pi^(1/2))*Pi^(1/2)/d+3/32*b^(3/2)*e*FresnelC(2*(a+b*arcsin(d*x+c))^(1/2) 
/b^(1/2)/Pi^(1/2))*sin(2*a/b)*Pi^(1/2)/d+3/8*b*e*(d*x+c)*(1-(d*x+c)^2)^(1/ 
2)*(a+b*arcsin(d*x+c))^(1/2)/d
 
3.3.47.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.69 \[ \int (c e+d e x) (a+b \arcsin (c+d x))^{3/2} \, dx=\frac {b^2 e e^{-\frac {2 i a}{b}} \left (\sqrt {-\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {5}{2},-\frac {2 i (a+b \arcsin (c+d x))}{b}\right )+e^{\frac {4 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {5}{2},\frac {2 i (a+b \arcsin (c+d x))}{b}\right )\right )}{16 \sqrt {2} d \sqrt {a+b \arcsin (c+d x)}} \]

input
Integrate[(c*e + d*e*x)*(a + b*ArcSin[c + d*x])^(3/2),x]
 
output
(b^2*e*(Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[5/2, ((-2*I)*(a + b*A 
rcSin[c + d*x]))/b] + E^(((4*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]* 
Gamma[5/2, ((2*I)*(a + b*ArcSin[c + d*x]))/b]))/(16*Sqrt[2]*d*E^(((2*I)*a) 
/b)*Sqrt[a + b*ArcSin[c + d*x]])
 
3.3.47.3 Rubi [A] (verified)

Time = 1.50 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.96, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.739, Rules used = {5304, 27, 5140, 5210, 5146, 25, 4906, 27, 3042, 3787, 25, 3042, 3785, 3786, 3832, 3833, 5152}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c e+d e x) (a+b \arcsin (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 5304

\(\displaystyle \frac {\int e (c+d x) (a+b \arcsin (c+d x))^{3/2}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e \int (c+d x) (a+b \arcsin (c+d x))^{3/2}d(c+d x)}{d}\)

\(\Big \downarrow \) 5140

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \int \frac {(c+d x)^2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)\right )}{d}\)

\(\Big \downarrow \) 5210

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{4} b \int \frac {c+d x}{\sqrt {a+b \arcsin (c+d x)}}d(c+d x)+\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 5146

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)+\frac {1}{4} \int -\frac {\cos \left (\frac {a}{b}-\frac {a+b \arcsin (c+d x)}{b}\right ) \sin \left (\frac {a}{b}-\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)-\frac {1}{4} \int \frac {\cos \left (\frac {a}{b}-\frac {a+b \arcsin (c+d x)}{b}\right ) \sin \left (\frac {a}{b}-\frac {a+b \arcsin (c+d x)}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 4906

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)-\frac {1}{4} \int \frac {\sin \left (\frac {2 a}{b}-\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 \sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)-\frac {1}{8} \int \frac {\sin \left (\frac {2 a}{b}-\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)-\frac {1}{8} \int \frac {\sin \left (\frac {2 a}{b}-\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 3787

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)+\frac {1}{8} \left (-\sin \left (\frac {2 a}{b}\right ) \int \frac {\cos \left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\cos \left (\frac {2 a}{b}\right ) \int -\frac {\sin \left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))\right )-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)+\frac {1}{8} \left (\cos \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\sin \left (\frac {2 a}{b}\right ) \int \frac {\cos \left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))\right )-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)+\frac {1}{8} \left (\cos \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-\sin \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arcsin (c+d x))}{b}+\frac {\pi }{2}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))\right )-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 3785

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)+\frac {1}{8} \left (\cos \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{\sqrt {a+b \arcsin (c+d x)}}d(a+b \arcsin (c+d x))-2 \sin \left (\frac {2 a}{b}\right ) \int \cos \left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )d\sqrt {a+b \arcsin (c+d x)}\right )-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 3786

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)+\frac {1}{8} \left (2 \cos \left (\frac {2 a}{b}\right ) \int \sin \left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )d\sqrt {a+b \arcsin (c+d x)}-2 \sin \left (\frac {2 a}{b}\right ) \int \cos \left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )d\sqrt {a+b \arcsin (c+d x)}\right )-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 3832

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{8} \left (\sqrt {\pi } \sqrt {b} \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )-2 \sin \left (\frac {2 a}{b}\right ) \int \cos \left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )d\sqrt {a+b \arcsin (c+d x)}\right )+\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 3833

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{2} \int \frac {\sqrt {a+b \arcsin (c+d x)}}{\sqrt {1-(c+d x)^2}}d(c+d x)+\frac {1}{8} \left (\sqrt {\pi } \sqrt {b} \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )-\sqrt {\pi } \sqrt {b} \sin \left (\frac {2 a}{b}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )\right )-\frac {1}{2} \sqrt {1-(c+d x)^2} (c+d x) \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 5152

\(\displaystyle \frac {e \left (\frac {1}{2} (c+d x)^2 (a+b \arcsin (c+d x))^{3/2}-\frac {3}{4} b \left (\frac {1}{8} \left (\sqrt {\pi } \sqrt {b} \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )-\sqrt {\pi } \sqrt {b} \sin \left (\frac {2 a}{b}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )\right )+\frac {(a+b \arcsin (c+d x))^{3/2}}{3 b}-\frac {1}{2} (c+d x) \sqrt {1-(c+d x)^2} \sqrt {a+b \arcsin (c+d x)}\right )\right )}{d}\)

input
Int[(c*e + d*e*x)*(a + b*ArcSin[c + d*x])^(3/2),x]
 
output
(e*(((c + d*x)^2*(a + b*ArcSin[c + d*x])^(3/2))/2 - (3*b*(-1/2*((c + d*x)* 
Sqrt[1 - (c + d*x)^2]*Sqrt[a + b*ArcSin[c + d*x]]) + (a + b*ArcSin[c + d*x 
])^(3/2)/(3*b) + (Sqrt[b]*Sqrt[Pi]*Cos[(2*a)/b]*FresnelS[(2*Sqrt[a + b*Arc 
Sin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])] - Sqrt[b]*Sqrt[Pi]*FresnelC[(2*Sqrt[a + 
 b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b])/8))/4))/d
 

3.3.47.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3785
Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> S 
imp[2/d   Subst[Int[Cos[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, 
d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3786
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[2/d 
   Subst[Int[Sin[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f 
}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3787
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Cos 
[(d*e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] + Simp[Sin[( 
d*e - c*f)/d]   Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c, d 
, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]
 

rule 3832
Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 3833
Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 4906
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b 
_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin[a + b*x 
]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IG 
tQ[p, 0]
 

rule 5140
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x 
^(m + 1)*((a + b*ArcSin[c*x])^n/(m + 1)), x] - Simp[b*c*(n/(m + 1))   Int[x 
^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{ 
a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]
 

rule 5146
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[1 
/(b*c^(m + 1))   Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b], x], x, a 
+ b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 

rule 5152
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_S 
ymbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a 
 + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d 
+ e, 0] && NeQ[n, -1]
 

rule 5210
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + 
 b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2*p 
 + 1)))   Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + S 
imp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f* 
x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; 
FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m 
, 1] && NeQ[m + 2*p + 1, 0]
 

rule 5304
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m 
_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*A 
rcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.3.47.4 Maple [A] (verified)

Time = 0.87 (sec) , antiderivative size = 308, normalized size of antiderivative = 1.55

method result size
default \(-\frac {e \left (-3 \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {2}{b}}\, b}\right ) b^{2}-3 \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {2 a}{b}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {2}{b}}\, b}\right ) b^{2}+8 \arcsin \left (d x +c \right )^{2} \cos \left (-\frac {2 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {2 a}{b}\right ) b^{2}+16 \arcsin \left (d x +c \right ) \cos \left (-\frac {2 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {2 a}{b}\right ) a b +6 \arcsin \left (d x +c \right ) \sin \left (-\frac {2 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {2 a}{b}\right ) b^{2}+8 \cos \left (-\frac {2 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {2 a}{b}\right ) a^{2}+6 \sin \left (-\frac {2 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {2 a}{b}\right ) a b \right )}{32 d \sqrt {a +b \arcsin \left (d x +c \right )}}\) \(308\)

input
int((d*e*x+c*e)*(a+b*arcsin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/32*e/d/(a+b*arcsin(d*x+c))^(1/2)*(-3*(-1/b)^(1/2)*Pi^(1/2)*(a+b*arcsin( 
d*x+c))^(1/2)*cos(2*a/b)*FresnelS(2*2^(1/2)/Pi^(1/2)/(-2/b)^(1/2)*(a+b*arc 
sin(d*x+c))^(1/2)/b)*b^2-3*(-1/b)^(1/2)*Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2) 
*sin(2*a/b)*FresnelC(2*2^(1/2)/Pi^(1/2)/(-2/b)^(1/2)*(a+b*arcsin(d*x+c))^( 
1/2)/b)*b^2+8*arcsin(d*x+c)^2*cos(-2*(a+b*arcsin(d*x+c))/b+2*a/b)*b^2+16*a 
rcsin(d*x+c)*cos(-2*(a+b*arcsin(d*x+c))/b+2*a/b)*a*b+6*arcsin(d*x+c)*sin(- 
2*(a+b*arcsin(d*x+c))/b+2*a/b)*b^2+8*cos(-2*(a+b*arcsin(d*x+c))/b+2*a/b)*a 
^2+6*sin(-2*(a+b*arcsin(d*x+c))/b+2*a/b)*a*b)
 
3.3.47.5 Fricas [F(-2)]

Exception generated. \[ \int (c e+d e x) (a+b \arcsin (c+d x))^{3/2} \, dx=\text {Exception raised: TypeError} \]

input
integrate((d*e*x+c*e)*(a+b*arcsin(d*x+c))^(3/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.3.47.6 Sympy [F]

\[ \int (c e+d e x) (a+b \arcsin (c+d x))^{3/2} \, dx=e \left (\int a c \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}\, dx + \int a d x \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}\, dx + \int b c \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}\, dx + \int b d x \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}\, dx\right ) \]

input
integrate((d*e*x+c*e)*(a+b*asin(d*x+c))**(3/2),x)
 
output
e*(Integral(a*c*sqrt(a + b*asin(c + d*x)), x) + Integral(a*d*x*sqrt(a + b* 
asin(c + d*x)), x) + Integral(b*c*sqrt(a + b*asin(c + d*x))*asin(c + d*x), 
 x) + Integral(b*d*x*sqrt(a + b*asin(c + d*x))*asin(c + d*x), x))
 
3.3.47.7 Maxima [F]

\[ \int (c e+d e x) (a+b \arcsin (c+d x))^{3/2} \, dx=\int { {\left (d e x + c e\right )} {\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((d*e*x+c*e)*(a+b*arcsin(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate((d*e*x + c*e)*(b*arcsin(d*x + c) + a)^(3/2), x)
 
3.3.47.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.86 (sec) , antiderivative size = 929, normalized size of antiderivative = 4.67 \[ \int (c e+d e x) (a+b \arcsin (c+d x))^{3/2} \, dx=\text {Too large to display} \]

input
integrate((d*e*x+c*e)*(a+b*arcsin(d*x+c))^(3/2),x, algorithm="giac")
 
output
1/4*I*sqrt(pi)*a^2*b^(3/2)*e*erf(-sqrt(b*arcsin(d*x + c) + a)/sqrt(b) - I* 
sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b^2 + I*b^3/abs( 
b))*d) - 1/8*sqrt(pi)*a*b^(5/2)*e*erf(-sqrt(b*arcsin(d*x + c) + a)/sqrt(b) 
 - I*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b^2 + I*b^3 
/abs(b))*d) - 1/4*I*sqrt(pi)*a^2*b^(3/2)*e*erf(-sqrt(b*arcsin(d*x + c) + a 
)/sqrt(b) + I*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-2*I*a/b)/((b 
^2 - I*b^3/abs(b))*d) - 1/8*sqrt(pi)*a*b^(5/2)*e*erf(-sqrt(b*arcsin(d*x + 
c) + a)/sqrt(b) + I*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-2*I*a/ 
b)/((b^2 - I*b^3/abs(b))*d) + 1/8*sqrt(pi)*a*b^2*e*erf(-sqrt(b*arcsin(d*x 
+ c) + a)/sqrt(b) - I*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(2*I*a 
/b)/((b^(3/2) + I*b^(5/2)/abs(b))*d) + 1/4*I*sqrt(pi)*a^2*b*e*erf(-sqrt(b* 
arcsin(d*x + c) + a)/sqrt(b) + I*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b 
))*e^(-2*I*a/b)/((b^(3/2) - I*b^(5/2)/abs(b))*d) + 1/8*sqrt(pi)*a*b^2*e*er 
f(-sqrt(b*arcsin(d*x + c) + a)/sqrt(b) + I*sqrt(b*arcsin(d*x + c) + a)*sqr 
t(b)/abs(b))*e^(-2*I*a/b)/((b^(3/2) - I*b^(5/2)/abs(b))*d) - 1/4*I*sqrt(pi 
)*a^2*sqrt(b)*e*erf(-sqrt(b*arcsin(d*x + c) + a)/sqrt(b) - I*sqrt(b*arcsin 
(d*x + c) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b + I*b^2/abs(b))*d) + 3/64*I 
*sqrt(pi)*b^(5/2)*e*erf(-sqrt(b*arcsin(d*x + c) + a)/sqrt(b) - I*sqrt(b*ar 
csin(d*x + c) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b + I*b^2/abs(b))*d) - 3/ 
64*I*sqrt(pi)*b^(5/2)*e*erf(-sqrt(b*arcsin(d*x + c) + a)/sqrt(b) + I*sq...
 
3.3.47.9 Mupad [F(-1)]

Timed out. \[ \int (c e+d e x) (a+b \arcsin (c+d x))^{3/2} \, dx=\int \left (c\,e+d\,e\,x\right )\,{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^{3/2} \,d x \]

input
int((c*e + d*e*x)*(a + b*asin(c + d*x))^(3/2),x)
 
output
int((c*e + d*e*x)*(a + b*asin(c + d*x))^(3/2), x)