3.3.67 \(\int \frac {(c e+d e x)^2}{(a+b \arcsin (c+d x))^{3/2}} \, dx\) [267]

3.3.67.1 Optimal result
3.3.67.2 Mathematica [C] (verified)
3.3.67.3 Rubi [A] (verified)
3.3.67.4 Maple [A] (verified)
3.3.67.5 Fricas [F(-2)]
3.3.67.6 Sympy [F]
3.3.67.7 Maxima [F]
3.3.67.8 Giac [F]
3.3.67.9 Mupad [F(-1)]

3.3.67.1 Optimal result

Integrand size = 25, antiderivative size = 280 \[ \int \frac {(c e+d e x)^2}{(a+b \arcsin (c+d x))^{3/2}} \, dx=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \arcsin (c+d x)}}-\frac {e^2 \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^2 \sqrt {\frac {3 \pi }{2}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^2 \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} d}-\frac {e^2 \sqrt {\frac {3 \pi }{2}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{b^{3/2} d} \]

output
-1/2*e^2*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1 
/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/d+1/2*e^2*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arc 
sin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/b^(3/2)/d+1/2*e^2*cos 
(3*a/b)*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*6^(1/ 
2)*Pi^(1/2)/b^(3/2)/d-1/2*e^2*FresnelC(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c) 
)^(1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/b^(3/2)/d-2*e^2*(d*x+c)^2*(1- 
(d*x+c)^2)^(1/2)/b/d/(a+b*arcsin(d*x+c))^(1/2)
 
3.3.67.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.45 (sec) , antiderivative size = 380, normalized size of antiderivative = 1.36 \[ \int \frac {(c e+d e x)^2}{(a+b \arcsin (c+d x))^{3/2}} \, dx=\frac {e^2 e^{-\frac {3 i (a+b \arcsin (c+d x))}{b}} \left (e^{\frac {3 i a}{b}}-e^{\frac {3 i a}{b}+2 i \arcsin (c+d x)}-e^{\frac {3 i a}{b}+4 i \arcsin (c+d x)}+e^{\frac {3 i (a+2 b \arcsin (c+d x))}{b}}+e^{\frac {2 i a}{b}+3 i \arcsin (c+d x)} \sqrt {-\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},-\frac {i (a+b \arcsin (c+d x))}{b}\right )+e^{\frac {4 i a}{b}+3 i \arcsin (c+d x)} \sqrt {\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},\frac {i (a+b \arcsin (c+d x))}{b}\right )-\sqrt {3} e^{3 i \arcsin (c+d x)} \sqrt {-\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},-\frac {3 i (a+b \arcsin (c+d x))}{b}\right )-\sqrt {3} e^{3 i \left (\frac {2 a}{b}+\arcsin (c+d x)\right )} \sqrt {\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},\frac {3 i (a+b \arcsin (c+d x))}{b}\right )\right )}{4 b d \sqrt {a+b \arcsin (c+d x)}} \]

input
Integrate[(c*e + d*e*x)^2/(a + b*ArcSin[c + d*x])^(3/2),x]
 
output
(e^2*(E^(((3*I)*a)/b) - E^(((3*I)*a)/b + (2*I)*ArcSin[c + d*x]) - E^(((3*I 
)*a)/b + (4*I)*ArcSin[c + d*x]) + E^(((3*I)*(a + 2*b*ArcSin[c + d*x]))/b) 
+ E^(((2*I)*a)/b + (3*I)*ArcSin[c + d*x])*Sqrt[((-I)*(a + b*ArcSin[c + d*x 
]))/b]*Gamma[1/2, ((-I)*(a + b*ArcSin[c + d*x]))/b] + E^(((4*I)*a)/b + (3* 
I)*ArcSin[c + d*x])*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, (I*(a + 
 b*ArcSin[c + d*x]))/b] - Sqrt[3]*E^((3*I)*ArcSin[c + d*x])*Sqrt[((-I)*(a 
+ b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-3*I)*(a + b*ArcSin[c + d*x]))/b] - 
Sqrt[3]*E^((3*I)*((2*a)/b + ArcSin[c + d*x]))*Sqrt[(I*(a + b*ArcSin[c + d* 
x]))/b]*Gamma[1/2, ((3*I)*(a + b*ArcSin[c + d*x]))/b]))/(4*b*d*E^(((3*I)*( 
a + b*ArcSin[c + d*x]))/b)*Sqrt[a + b*ArcSin[c + d*x]])
 
3.3.67.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 273, normalized size of antiderivative = 0.98, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {5304, 27, 5142, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c e+d e x)^2}{(a+b \arcsin (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 5304

\(\displaystyle \frac {\int \frac {e^2 (c+d x)^2}{(a+b \arcsin (c+d x))^{3/2}}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^2 \int \frac {(c+d x)^2}{(a+b \arcsin (c+d x))^{3/2}}d(c+d x)}{d}\)

\(\Big \downarrow \) 5142

\(\displaystyle \frac {e^2 \left (\frac {2 \int \left (\frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c+d x)}{b}\right )}{4 \sqrt {a+b \arcsin (c+d x)}}-\frac {3 \sin \left (\frac {3 a}{b}-\frac {3 (a+b \arcsin (c+d x))}{b}\right )}{4 \sqrt {a+b \arcsin (c+d x)}}\right )d(a+b \arcsin (c+d x))}{b^2}-\frac {2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^2 \left (\frac {2 \left (\frac {1}{2} \sqrt {\frac {\pi }{2}} \sqrt {b} \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )-\frac {1}{2} \sqrt {\frac {3 \pi }{2}} \sqrt {b} \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )-\frac {1}{2} \sqrt {\frac {\pi }{2}} \sqrt {b} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )+\frac {1}{2} \sqrt {\frac {3 \pi }{2}} \sqrt {b} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )\right )}{b^2}-\frac {2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b \sqrt {a+b \arcsin (c+d x)}}\right )}{d}\)

input
Int[(c*e + d*e*x)^2/(a + b*ArcSin[c + d*x])^(3/2),x]
 
output
(e^2*((-2*(c + d*x)^2*Sqrt[1 - (c + d*x)^2])/(b*Sqrt[a + b*ArcSin[c + d*x] 
]) + (2*(-1/2*(Sqrt[b]*Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b 
*ArcSin[c + d*x]])/Sqrt[b]]) + (Sqrt[b]*Sqrt[(3*Pi)/2]*Cos[(3*a)/b]*Fresne 
lS[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/2 + (Sqrt[b]*Sqrt[Pi 
/2]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b])/2 
 - (Sqrt[b]*Sqrt[(3*Pi)/2]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x] 
])/Sqrt[b]]*Sin[(3*a)/b])/2))/b^2))/d
 

3.3.67.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5142
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x 
^m*Sqrt[1 - c^2*x^2]*((a + b*ArcSin[c*x])^(n + 1)/(b*c*(n + 1))), x] - Simp 
[1/(b^2*c^(m + 1)*(n + 1))   Subst[Int[ExpandTrigReduce[x^(n + 1), Sin[-a/b 
 + x/b]^(m - 1)*(m - (m + 1)*Sin[-a/b + x/b]^2), x], x], x, a + b*ArcSin[c* 
x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]
 

rule 5304
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m 
_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*A 
rcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.3.67.4 Maple [A] (verified)

Time = 1.30 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.16

method result size
default \(-\frac {e^{2} \left (-\sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}-\sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}+\cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}+\sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}+\cos \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right )-\cos \left (-\frac {3 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {3 a}{b}\right )\right )}{2 d b \sqrt {a +b \arcsin \left (d x +c \right )}}\) \(326\)

input
int((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/2*e^2/d/b*(-(a+b*arcsin(d*x+c))^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2 
)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)- 
(a+b*arcsin(d*x+c))^(1/2)*sin(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)* 
(a+b*arcsin(d*x+c))^(1/2)/b)*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)+cos(3*a/b)*Fres 
nelS(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2)* 
Pi^(1/2)*(-3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)+sin(3*a/b)*FresnelC(3*2^(1 
/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2)*Pi^(1/2)*(- 
3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)+cos(-(a+b*arcsin(d*x+c))/b+a/b)-cos(- 
3*(a+b*arcsin(d*x+c))/b+3*a/b))/(a+b*arcsin(d*x+c))^(1/2)
 
3.3.67.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {(c e+d e x)^2}{(a+b \arcsin (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.3.67.6 Sympy [F]

\[ \int \frac {(c e+d e x)^2}{(a+b \arcsin (c+d x))^{3/2}} \, dx=e^{2} \left (\int \frac {c^{2}}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx + \int \frac {d^{2} x^{2}}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx + \int \frac {2 c d x}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx\right ) \]

input
integrate((d*e*x+c*e)**2/(a+b*asin(d*x+c))**(3/2),x)
 
output
e**2*(Integral(c**2/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d 
*x))*asin(c + d*x)), x) + Integral(d**2*x**2/(a*sqrt(a + b*asin(c + d*x)) 
+ b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(2*c*d*x/(a*sqr 
t(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x))
 
3.3.67.7 Maxima [F]

\[ \int \frac {(c e+d e x)^2}{(a+b \arcsin (c+d x))^{3/2}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{2}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate((d*e*x + c*e)^2/(b*arcsin(d*x + c) + a)^(3/2), x)
 
3.3.67.8 Giac [F]

\[ \int \frac {(c e+d e x)^2}{(a+b \arcsin (c+d x))^{3/2}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{2}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate((d*e*x + c*e)^2/(b*arcsin(d*x + c) + a)^(3/2), x)
 
3.3.67.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c e+d e x)^2}{(a+b \arcsin (c+d x))^{3/2}} \, dx=\int \frac {{\left (c\,e+d\,e\,x\right )}^2}{{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^(3/2),x)
 
output
int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^(3/2), x)