3.4.92 \(\int \frac {a+b \arcsin (c+d x^2)}{x^7} \, dx\) [392]

3.4.92.1 Optimal result
3.4.92.2 Mathematica [A] (verified)
3.4.92.3 Rubi [A] (verified)
3.4.92.4 Maple [A] (verified)
3.4.92.5 Fricas [A] (verification not implemented)
3.4.92.6 Sympy [F]
3.4.92.7 Maxima [F(-2)]
3.4.92.8 Giac [F]
3.4.92.9 Mupad [F(-1)]

3.4.92.1 Optimal result

Integrand size = 16, antiderivative size = 190 \[ \int \frac {a+b \arcsin \left (c+d x^2\right )}{x^7} \, dx=-\frac {b d \sqrt {1-c^2-2 c d x^2-d^2 x^4}}{12 \left (1-c^2\right ) x^4}-\frac {b c d^2 \sqrt {1-c^2-2 c d x^2-d^2 x^4}}{4 \left (1-c^2\right )^2 x^2}-\frac {a+b \arcsin \left (c+d x^2\right )}{6 x^6}-\frac {b \left (1+2 c^2\right ) d^3 \text {arctanh}\left (\frac {1-c^2-c d x^2}{\sqrt {1-c^2} \sqrt {1-c^2-2 c d x^2-d^2 x^4}}\right )}{12 \left (1-c^2\right )^{5/2}} \]

output
1/6*(-a-b*arcsin(d*x^2+c))/x^6-1/12*b*(2*c^2+1)*d^3*arctanh((-c*d*x^2-c^2+ 
1)/(-c^2+1)^(1/2)/(-d^2*x^4-2*c*d*x^2-c^2+1)^(1/2))/(-c^2+1)^(5/2)-1/12*b* 
d*(-d^2*x^4-2*c*d*x^2-c^2+1)^(1/2)/(-c^2+1)/x^4-1/4*b*c*d^2*(-d^2*x^4-2*c* 
d*x^2-c^2+1)^(1/2)/(-c^2+1)^2/x^2
 
3.4.92.2 Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.92 \[ \int \frac {a+b \arcsin \left (c+d x^2\right )}{x^7} \, dx=-\frac {a}{6 x^6}+b \left (\frac {d}{12 \left (-1+c^2\right ) x^4}-\frac {c d^2}{4 \left (-1+c^2\right )^2 x^2}\right ) \sqrt {1-c^2-2 c d x^2-d^2 x^4}-\frac {b \arcsin \left (c+d x^2\right )}{6 x^6}-\frac {b \left (1+2 c^2\right ) d^3 \arctan \left (\frac {\sqrt {-d^2} x^2-\sqrt {1-c^2-2 c d x^2-d^2 x^4}}{\sqrt {-1+c^2}}\right )}{6 (-1+c)^2 (1+c)^2 \sqrt {-1+c^2}} \]

input
Integrate[(a + b*ArcSin[c + d*x^2])/x^7,x]
 
output
-1/6*a/x^6 + b*(d/(12*(-1 + c^2)*x^4) - (c*d^2)/(4*(-1 + c^2)^2*x^2))*Sqrt 
[1 - c^2 - 2*c*d*x^2 - d^2*x^4] - (b*ArcSin[c + d*x^2])/(6*x^6) - (b*(1 + 
2*c^2)*d^3*ArcTan[(Sqrt[-d^2]*x^2 - Sqrt[1 - c^2 - 2*c*d*x^2 - d^2*x^4])/S 
qrt[-1 + c^2]])/(6*(-1 + c)^2*(1 + c)^2*Sqrt[-1 + c^2])
 
3.4.92.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.05, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.562, Rules used = {5341, 27, 1434, 1167, 25, 27, 1228, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \arcsin \left (c+d x^2\right )}{x^7} \, dx\)

\(\Big \downarrow \) 5341

\(\displaystyle \frac {1}{6} b \int \frac {2 d}{x^5 \sqrt {-d^2 x^4-2 c d x^2-c^2+1}}dx-\frac {a+b \arcsin \left (c+d x^2\right )}{6 x^6}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} b d \int \frac {1}{x^5 \sqrt {-d^2 x^4-2 c d x^2-c^2+1}}dx-\frac {a+b \arcsin \left (c+d x^2\right )}{6 x^6}\)

\(\Big \downarrow \) 1434

\(\displaystyle \frac {1}{6} b d \int \frac {1}{x^6 \sqrt {-d^2 x^4-2 c d x^2-c^2+1}}dx^2-\frac {a+b \arcsin \left (c+d x^2\right )}{6 x^6}\)

\(\Big \downarrow \) 1167

\(\displaystyle \frac {1}{6} b d \left (-\frac {\int -\frac {d \left (d x^2+3 c\right )}{x^4 \sqrt {-d^2 x^4-2 c d x^2-c^2+1}}dx^2}{2 \left (1-c^2\right )}-\frac {\sqrt {-c^2-2 c d x^2-d^2 x^4+1}}{2 \left (1-c^2\right ) x^4}\right )-\frac {a+b \arcsin \left (c+d x^2\right )}{6 x^6}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{6} b d \left (\frac {\int \frac {d \left (d x^2+3 c\right )}{x^4 \sqrt {-d^2 x^4-2 c d x^2-c^2+1}}dx^2}{2 \left (1-c^2\right )}-\frac {\sqrt {-c^2-2 c d x^2-d^2 x^4+1}}{2 \left (1-c^2\right ) x^4}\right )-\frac {a+b \arcsin \left (c+d x^2\right )}{6 x^6}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} b d \left (\frac {d \int \frac {d x^2+3 c}{x^4 \sqrt {-d^2 x^4-2 c d x^2-c^2+1}}dx^2}{2 \left (1-c^2\right )}-\frac {\sqrt {-c^2-2 c d x^2-d^2 x^4+1}}{2 \left (1-c^2\right ) x^4}\right )-\frac {a+b \arcsin \left (c+d x^2\right )}{6 x^6}\)

\(\Big \downarrow \) 1228

\(\displaystyle \frac {1}{6} b d \left (\frac {d \left (\frac {\left (2 c^2+1\right ) d \int \frac {1}{x^2 \sqrt {-d^2 x^4-2 c d x^2-c^2+1}}dx^2}{1-c^2}-\frac {3 c \sqrt {-c^2-2 c d x^2-d^2 x^4+1}}{\left (1-c^2\right ) x^2}\right )}{2 \left (1-c^2\right )}-\frac {\sqrt {-c^2-2 c d x^2-d^2 x^4+1}}{2 \left (1-c^2\right ) x^4}\right )-\frac {a+b \arcsin \left (c+d x^2\right )}{6 x^6}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {1}{6} b d \left (\frac {d \left (-\frac {2 \left (2 c^2+1\right ) d \int \frac {1}{4 \left (1-c^2\right )-x^4}d\frac {2 \left (-c^2-d x^2 c+1\right )}{\sqrt {-d^2 x^4-2 c d x^2-c^2+1}}}{1-c^2}-\frac {3 c \sqrt {-c^2-2 c d x^2-d^2 x^4+1}}{\left (1-c^2\right ) x^2}\right )}{2 \left (1-c^2\right )}-\frac {\sqrt {-c^2-2 c d x^2-d^2 x^4+1}}{2 \left (1-c^2\right ) x^4}\right )-\frac {a+b \arcsin \left (c+d x^2\right )}{6 x^6}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{6} b d \left (\frac {d \left (-\frac {\left (2 c^2+1\right ) d \text {arctanh}\left (\frac {-c^2-c d x^2+1}{\sqrt {1-c^2} \sqrt {-c^2-2 c d x^2-d^2 x^4+1}}\right )}{\left (1-c^2\right )^{3/2}}-\frac {3 c \sqrt {-c^2-2 c d x^2-d^2 x^4+1}}{\left (1-c^2\right ) x^2}\right )}{2 \left (1-c^2\right )}-\frac {\sqrt {-c^2-2 c d x^2-d^2 x^4+1}}{2 \left (1-c^2\right ) x^4}\right )-\frac {a+b \arcsin \left (c+d x^2\right )}{6 x^6}\)

input
Int[(a + b*ArcSin[c + d*x^2])/x^7,x]
 
output
-1/6*(a + b*ArcSin[c + d*x^2])/x^6 + (b*d*(-1/2*Sqrt[1 - c^2 - 2*c*d*x^2 - 
 d^2*x^4]/((1 - c^2)*x^4) + (d*((-3*c*Sqrt[1 - c^2 - 2*c*d*x^2 - d^2*x^4]) 
/((1 - c^2)*x^2) - ((1 + 2*c^2)*d*ArcTanh[(1 - c^2 - c*d*x^2)/(Sqrt[1 - c^ 
2]*Sqrt[1 - c^2 - 2*c*d*x^2 - d^2*x^4])])/(1 - c^2)^(3/2)))/(2*(1 - c^2))) 
)/6
 

3.4.92.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1167
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[e*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d 
^2 - b*d*e + a*e^2))), x] + Simp[1/((m + 1)*(c*d^2 - b*d*e + a*e^2))   Int[ 
(d + e*x)^(m + 1)*Simp[c*d*(m + 1) - b*e*(m + p + 2) - c*e*(m + 2*p + 3)*x, 
 x]*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[m 
, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]) || (SumSimp 
lerQ[m, 1] && IntegerQ[p]) || ILtQ[Simplify[m + 2*p + 3], 0])
 

rule 1228
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + 
 b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[(b*(e 
*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^ 
(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x 
] && EqQ[Simplify[m + 2*p + 3], 0]
 

rule 1434
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp 
[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x + c*x^2)^p, x], x, x^2], x] /; Free 
Q[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]
 

rule 5341
Int[((a_.) + ArcSin[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Sim 
p[(c + d*x)^(m + 1)*((a + b*ArcSin[u])/(d*(m + 1))), x] - Simp[b/(d*(m + 1) 
)   Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/Sqrt[1 - u^2]), x], x] 
, x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, 
x] &&  !FunctionOfQ[(c + d*x)^(m + 1), u, x] &&  !FunctionOfExponentialQ[u, 
 x]
 
3.4.92.4 Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.29

method result size
default \(-\frac {a}{6 x^{6}}+b \left (-\frac {\arcsin \left (d \,x^{2}+c \right )}{6 x^{6}}+\frac {d \left (-\frac {\sqrt {-d^{2} x^{4}-2 c d \,x^{2}-c^{2}+1}}{4 \left (-c^{2}+1\right ) x^{4}}-\frac {3 d c \sqrt {-d^{2} x^{4}-2 c d \,x^{2}-c^{2}+1}}{4 \left (-c^{2}+1\right )^{2} x^{2}}-\frac {3 d^{2} c^{2} \ln \left (\frac {-2 c^{2}+2-2 c d \,x^{2}+2 \sqrt {-c^{2}+1}\, \sqrt {-d^{2} x^{4}-2 c d \,x^{2}-c^{2}+1}}{x^{2}}\right )}{4 \left (-c^{2}+1\right )^{\frac {5}{2}}}-\frac {d^{2} \ln \left (\frac {-2 c^{2}+2-2 c d \,x^{2}+2 \sqrt {-c^{2}+1}\, \sqrt {-d^{2} x^{4}-2 c d \,x^{2}-c^{2}+1}}{x^{2}}\right )}{4 \left (-c^{2}+1\right )^{\frac {3}{2}}}\right )}{3}\right )\) \(245\)
parts \(-\frac {a}{6 x^{6}}+b \left (-\frac {\arcsin \left (d \,x^{2}+c \right )}{6 x^{6}}+\frac {d \left (-\frac {\sqrt {-d^{2} x^{4}-2 c d \,x^{2}-c^{2}+1}}{4 \left (-c^{2}+1\right ) x^{4}}-\frac {3 d c \sqrt {-d^{2} x^{4}-2 c d \,x^{2}-c^{2}+1}}{4 \left (-c^{2}+1\right )^{2} x^{2}}-\frac {3 d^{2} c^{2} \ln \left (\frac {-2 c^{2}+2-2 c d \,x^{2}+2 \sqrt {-c^{2}+1}\, \sqrt {-d^{2} x^{4}-2 c d \,x^{2}-c^{2}+1}}{x^{2}}\right )}{4 \left (-c^{2}+1\right )^{\frac {5}{2}}}-\frac {d^{2} \ln \left (\frac {-2 c^{2}+2-2 c d \,x^{2}+2 \sqrt {-c^{2}+1}\, \sqrt {-d^{2} x^{4}-2 c d \,x^{2}-c^{2}+1}}{x^{2}}\right )}{4 \left (-c^{2}+1\right )^{\frac {3}{2}}}\right )}{3}\right )\) \(245\)

input
int((a+b*arcsin(d*x^2+c))/x^7,x,method=_RETURNVERBOSE)
 
output
-1/6*a/x^6+b*(-1/6/x^6*arcsin(d*x^2+c)+1/3*d*(-1/4/(-c^2+1)/x^4*(-d^2*x^4- 
2*c*d*x^2-c^2+1)^(1/2)-3/4*d*c/(-c^2+1)^2/x^2*(-d^2*x^4-2*c*d*x^2-c^2+1)^( 
1/2)-3/4*d^2*c^2/(-c^2+1)^(5/2)*ln((-2*c^2+2-2*c*d*x^2+2*(-c^2+1)^(1/2)*(- 
d^2*x^4-2*c*d*x^2-c^2+1)^(1/2))/x^2)-1/4*d^2/(-c^2+1)^(3/2)*ln((-2*c^2+2-2 
*c*d*x^2+2*(-c^2+1)^(1/2)*(-d^2*x^4-2*c*d*x^2-c^2+1)^(1/2))/x^2)))
 
3.4.92.5 Fricas [A] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 496, normalized size of antiderivative = 2.61 \[ \int \frac {a+b \arcsin \left (c+d x^2\right )}{x^7} \, dx=\left [-\frac {{\left (2 \, b c^{2} + b\right )} \sqrt {-c^{2} + 1} d^{3} x^{6} \log \left (\frac {{\left (2 \, c^{2} - 1\right )} d^{2} x^{4} + 2 \, c^{4} + 4 \, {\left (c^{3} - c\right )} d x^{2} + 2 \, \sqrt {-d^{2} x^{4} - 2 \, c d x^{2} - c^{2} + 1} {\left (c d x^{2} + c^{2} - 1\right )} \sqrt {-c^{2} + 1} - 4 \, c^{2} + 2}{x^{4}}\right ) + 4 \, a c^{6} - 12 \, a c^{4} + 12 \, a c^{2} + 4 \, {\left (b c^{6} - 3 \, b c^{4} + 3 \, b c^{2} - b\right )} \arcsin \left (d x^{2} + c\right ) + 2 \, {\left (3 \, {\left (b c^{3} - b c\right )} d^{2} x^{4} - {\left (b c^{4} - 2 \, b c^{2} + b\right )} d x^{2}\right )} \sqrt {-d^{2} x^{4} - 2 \, c d x^{2} - c^{2} + 1} - 4 \, a}{24 \, {\left (c^{6} - 3 \, c^{4} + 3 \, c^{2} - 1\right )} x^{6}}, \frac {{\left (2 \, b c^{2} + b\right )} \sqrt {c^{2} - 1} d^{3} x^{6} \arctan \left (\frac {\sqrt {-d^{2} x^{4} - 2 \, c d x^{2} - c^{2} + 1} {\left (c d x^{2} + c^{2} - 1\right )} \sqrt {c^{2} - 1}}{{\left (c^{2} - 1\right )} d^{2} x^{4} + c^{4} + 2 \, {\left (c^{3} - c\right )} d x^{2} - 2 \, c^{2} + 1}\right ) - 2 \, a c^{6} + 6 \, a c^{4} - 6 \, a c^{2} - 2 \, {\left (b c^{6} - 3 \, b c^{4} + 3 \, b c^{2} - b\right )} \arcsin \left (d x^{2} + c\right ) - {\left (3 \, {\left (b c^{3} - b c\right )} d^{2} x^{4} - {\left (b c^{4} - 2 \, b c^{2} + b\right )} d x^{2}\right )} \sqrt {-d^{2} x^{4} - 2 \, c d x^{2} - c^{2} + 1} + 2 \, a}{12 \, {\left (c^{6} - 3 \, c^{4} + 3 \, c^{2} - 1\right )} x^{6}}\right ] \]

input
integrate((a+b*arcsin(d*x^2+c))/x^7,x, algorithm="fricas")
 
output
[-1/24*((2*b*c^2 + b)*sqrt(-c^2 + 1)*d^3*x^6*log(((2*c^2 - 1)*d^2*x^4 + 2* 
c^4 + 4*(c^3 - c)*d*x^2 + 2*sqrt(-d^2*x^4 - 2*c*d*x^2 - c^2 + 1)*(c*d*x^2 
+ c^2 - 1)*sqrt(-c^2 + 1) - 4*c^2 + 2)/x^4) + 4*a*c^6 - 12*a*c^4 + 12*a*c^ 
2 + 4*(b*c^6 - 3*b*c^4 + 3*b*c^2 - b)*arcsin(d*x^2 + c) + 2*(3*(b*c^3 - b* 
c)*d^2*x^4 - (b*c^4 - 2*b*c^2 + b)*d*x^2)*sqrt(-d^2*x^4 - 2*c*d*x^2 - c^2 
+ 1) - 4*a)/((c^6 - 3*c^4 + 3*c^2 - 1)*x^6), 1/12*((2*b*c^2 + b)*sqrt(c^2 
- 1)*d^3*x^6*arctan(sqrt(-d^2*x^4 - 2*c*d*x^2 - c^2 + 1)*(c*d*x^2 + c^2 - 
1)*sqrt(c^2 - 1)/((c^2 - 1)*d^2*x^4 + c^4 + 2*(c^3 - c)*d*x^2 - 2*c^2 + 1) 
) - 2*a*c^6 + 6*a*c^4 - 6*a*c^2 - 2*(b*c^6 - 3*b*c^4 + 3*b*c^2 - b)*arcsin 
(d*x^2 + c) - (3*(b*c^3 - b*c)*d^2*x^4 - (b*c^4 - 2*b*c^2 + b)*d*x^2)*sqrt 
(-d^2*x^4 - 2*c*d*x^2 - c^2 + 1) + 2*a)/((c^6 - 3*c^4 + 3*c^2 - 1)*x^6)]
 
3.4.92.6 Sympy [F]

\[ \int \frac {a+b \arcsin \left (c+d x^2\right )}{x^7} \, dx=\int \frac {a + b \operatorname {asin}{\left (c + d x^{2} \right )}}{x^{7}}\, dx \]

input
integrate((a+b*asin(d*x**2+c))/x**7,x)
 
output
Integral((a + b*asin(c + d*x**2))/x**7, x)
 
3.4.92.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \arcsin \left (c+d x^2\right )}{x^7} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*arcsin(d*x^2+c))/x^7,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(c-1>0)', see `assume?` for more 
details)Is
 
3.4.92.8 Giac [F]

\[ \int \frac {a+b \arcsin \left (c+d x^2\right )}{x^7} \, dx=\int { \frac {b \arcsin \left (d x^{2} + c\right ) + a}{x^{7}} \,d x } \]

input
integrate((a+b*arcsin(d*x^2+c))/x^7,x, algorithm="giac")
 
output
integrate((b*arcsin(d*x^2 + c) + a)/x^7, x)
 
3.4.92.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \arcsin \left (c+d x^2\right )}{x^7} \, dx=\int \frac {a+b\,\mathrm {asin}\left (d\,x^2+c\right )}{x^7} \,d x \]

input
int((a + b*asin(c + d*x^2))/x^7,x)
 
output
int((a + b*asin(c + d*x^2))/x^7, x)