3.5.71 \(\int \frac {\arcsin (\sqrt {1+b x^2})^n}{\sqrt {1+b x^2}} \, dx\) [471]

3.5.71.1 Optimal result
3.5.71.2 Mathematica [A] (verified)
3.5.71.3 Rubi [A] (verified)
3.5.71.4 Maple [F]
3.5.71.5 Fricas [A] (verification not implemented)
3.5.71.6 Sympy [F]
3.5.71.7 Maxima [F(-2)]
3.5.71.8 Giac [F]
3.5.71.9 Mupad [F(-1)]

3.5.71.1 Optimal result

Integrand size = 26, antiderivative size = 38 \[ \int \frac {\arcsin \left (\sqrt {1+b x^2}\right )^n}{\sqrt {1+b x^2}} \, dx=\frac {\sqrt {-b x^2} \arcsin \left (\sqrt {1+b x^2}\right )^{1+n}}{b (1+n) x} \]

output
arcsin((b*x^2+1)^(1/2))^(1+n)*(-b*x^2)^(1/2)/b/(1+n)/x
 
3.5.71.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.00 \[ \int \frac {\arcsin \left (\sqrt {1+b x^2}\right )^n}{\sqrt {1+b x^2}} \, dx=\frac {\sqrt {-b x^2} \arcsin \left (\sqrt {1+b x^2}\right )^{1+n}}{b (1+n) x} \]

input
Integrate[ArcSin[Sqrt[1 + b*x^2]]^n/Sqrt[1 + b*x^2],x]
 
output
(Sqrt[-(b*x^2)]*ArcSin[Sqrt[1 + b*x^2]]^(1 + n))/(b*(1 + n)*x)
 
3.5.71.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {5333, 5152}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\arcsin \left (\sqrt {b x^2+1}\right )^n}{\sqrt {b x^2+1}} \, dx\)

\(\Big \downarrow \) 5333

\(\displaystyle \frac {\sqrt {-b x^2} \int \frac {\arcsin \left (\sqrt {b x^2+1}\right )^n}{\sqrt {-b x^2}}d\sqrt {b x^2+1}}{b x}\)

\(\Big \downarrow \) 5152

\(\displaystyle \frac {\sqrt {-b x^2} \arcsin \left (\sqrt {b x^2+1}\right )^{n+1}}{b (n+1) x}\)

input
Int[ArcSin[Sqrt[1 + b*x^2]]^n/Sqrt[1 + b*x^2],x]
 
output
(Sqrt[-(b*x^2)]*ArcSin[Sqrt[1 + b*x^2]]^(1 + n))/(b*(1 + n)*x)
 

3.5.71.3.1 Defintions of rubi rules used

rule 5152
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_S 
ymbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a 
 + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d 
+ e, 0] && NeQ[n, -1]
 

rule 5333
Int[ArcSin[Sqrt[1 + (b_.)*(x_)^2]]^(n_.)/Sqrt[1 + (b_.)*(x_)^2], x_Symbol] 
:> Simp[Sqrt[(-b)*x^2]/(b*x)   Subst[Int[ArcSin[x]^n/Sqrt[1 - x^2], x], x, 
Sqrt[1 + b*x^2]], x] /; FreeQ[{b, n}, x]
 
3.5.71.4 Maple [F]

\[\int \frac {\arcsin \left (\sqrt {b \,x^{2}+1}\right )^{n}}{\sqrt {b \,x^{2}+1}}d x\]

input
int(arcsin((b*x^2+1)^(1/2))^n/(b*x^2+1)^(1/2),x)
 
output
int(arcsin((b*x^2+1)^(1/2))^n/(b*x^2+1)^(1/2),x)
 
3.5.71.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.08 \[ \int \frac {\arcsin \left (\sqrt {1+b x^2}\right )^n}{\sqrt {1+b x^2}} \, dx=\frac {\sqrt {-b x^{2}} \arcsin \left (\sqrt {b x^{2} + 1}\right )^{n} \arcsin \left (\sqrt {b x^{2} + 1}\right )}{{\left (b n + b\right )} x} \]

input
integrate(arcsin((b*x^2+1)^(1/2))^n/(b*x^2+1)^(1/2),x, algorithm="fricas")
 
output
sqrt(-b*x^2)*arcsin(sqrt(b*x^2 + 1))^n*arcsin(sqrt(b*x^2 + 1))/((b*n + b)* 
x)
 
3.5.71.6 Sympy [F]

\[ \int \frac {\arcsin \left (\sqrt {1+b x^2}\right )^n}{\sqrt {1+b x^2}} \, dx=\begin {cases} \frac {2 x}{\pi } & \text {for}\: b = 0 \wedge n = -1 \\x \left (\frac {\pi }{2}\right )^{n} & \text {for}\: b = 0 \\\int \frac {1}{\sqrt {b x^{2} + 1} \operatorname {asin}{\left (\sqrt {b x^{2} + 1} \right )}}\, dx & \text {for}\: n = -1 \\\frac {\sqrt {- b x^{2}} \operatorname {asin}{\left (\sqrt {b x^{2} + 1} \right )} \operatorname {asin}^{n}{\left (\sqrt {b x^{2} + 1} \right )}}{b n x + b x} & \text {otherwise} \end {cases} \]

input
integrate(asin((b*x**2+1)**(1/2))**n/(b*x**2+1)**(1/2),x)
 
output
Piecewise((2*x/pi, Eq(b, 0) & Eq(n, -1)), (x*(pi/2)**n, Eq(b, 0)), (Integr 
al(1/(sqrt(b*x**2 + 1)*asin(sqrt(b*x**2 + 1))), x), Eq(n, -1)), (sqrt(-b*x 
**2)*asin(sqrt(b*x**2 + 1))*asin(sqrt(b*x**2 + 1))**n/(b*n*x + b*x), True) 
)
 
3.5.71.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\arcsin \left (\sqrt {1+b x^2}\right )^n}{\sqrt {1+b x^2}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(arcsin((b*x^2+1)^(1/2))^n/(b*x^2+1)^(1/2),x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: sign: argument cannot be imagi 
nary; found sqrt(-_SAGE_VAR_b)
 
3.5.71.8 Giac [F]

\[ \int \frac {\arcsin \left (\sqrt {1+b x^2}\right )^n}{\sqrt {1+b x^2}} \, dx=\int { \frac {\arcsin \left (\sqrt {b x^{2} + 1}\right )^{n}}{\sqrt {b x^{2} + 1}} \,d x } \]

input
integrate(arcsin((b*x^2+1)^(1/2))^n/(b*x^2+1)^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.5.71.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\arcsin \left (\sqrt {1+b x^2}\right )^n}{\sqrt {1+b x^2}} \, dx=\int \frac {{\mathrm {asin}\left (\sqrt {b\,x^2+1}\right )}^n}{\sqrt {b\,x^2+1}} \,d x \]

input
int(asin((b*x^2 + 1)^(1/2))^n/(b*x^2 + 1)^(1/2),x)
 
output
int(asin((b*x^2 + 1)^(1/2))^n/(b*x^2 + 1)^(1/2), x)