3.1.39 \(\int \frac {(d-c^2 d x^2)^{3/2} (a+b \arcsin (c x))}{f+g x} \, dx\) [39]

3.1.39.1 Optimal result
3.1.39.2 Mathematica [A] (verified)
3.1.39.3 Rubi [A] (verified)
3.1.39.4 Maple [A] (verified)
3.1.39.5 Fricas [F]
3.1.39.6 Sympy [F]
3.1.39.7 Maxima [F(-2)]
3.1.39.8 Giac [F(-2)]
3.1.39.9 Mupad [F(-1)]

3.1.39.1 Optimal result

Integrand size = 31, antiderivative size = 1073 \[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{f+g x} \, dx=-\frac {a d (c f-g) (c f+g) \sqrt {d-c^2 d x^2}}{g^3}-\frac {b c d x \sqrt {d-c^2 d x^2}}{3 g \sqrt {1-c^2 x^2}}+\frac {b c d (c f-g) (c f+g) x \sqrt {d-c^2 d x^2}}{g^3 \sqrt {1-c^2 x^2}}-\frac {b c^3 d f x^2 \sqrt {d-c^2 d x^2}}{4 g^2 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^3 \sqrt {d-c^2 d x^2}}{9 g \sqrt {1-c^2 x^2}}-\frac {b d (c f-g) (c f+g) \sqrt {d-c^2 d x^2} \arcsin (c x)}{g^3}+\frac {c^2 d f x \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))}{2 g^2}+\frac {d \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))}{3 g}+\frac {c d f \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 b g^2 \sqrt {1-c^2 x^2}}-\frac {c d (c f-g) (c f+g) x \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{2 b g^3 \sqrt {1-c^2 x^2}}-\frac {d \left (c^2 f^2-g^2\right )^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{2 b c g^4 (f+g x) \sqrt {1-c^2 x^2}}-\frac {d (c f-g) (c f+g) \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{2 b c g^2 (f+g x)}+\frac {a d \left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2} \arctan \left (\frac {g+c^2 f x}{\sqrt {c^2 f^2-g^2} \sqrt {1-c^2 x^2}}\right )}{g^4 \sqrt {1-c^2 x^2}}-\frac {i b d \left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2} \arcsin (c x) \log \left (1-\frac {i e^{i \arcsin (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )}{g^4 \sqrt {1-c^2 x^2}}+\frac {i b d \left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2} \arcsin (c x) \log \left (1-\frac {i e^{i \arcsin (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )}{g^4 \sqrt {1-c^2 x^2}}-\frac {b d \left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2} \operatorname {PolyLog}\left (2,\frac {i e^{i \arcsin (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )}{g^4 \sqrt {1-c^2 x^2}}+\frac {b d \left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2} \operatorname {PolyLog}\left (2,\frac {i e^{i \arcsin (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )}{g^4 \sqrt {1-c^2 x^2}} \]

output
-a*d*(c*f-g)*(c*f+g)*(-c^2*d*x^2+d)^(1/2)/g^3-b*d*(c*f-g)*(c*f+g)*arcsin(c 
*x)*(-c^2*d*x^2+d)^(1/2)/g^3+1/2*c^2*d*f*x*(a+b*arcsin(c*x))*(-c^2*d*x^2+d 
)^(1/2)/g^2+1/3*d*(-c^2*x^2+1)*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)/g-1/ 
3*b*c*d*x*(-c^2*d*x^2+d)^(1/2)/g/(-c^2*x^2+1)^(1/2)+b*c*d*(c*f-g)*(c*f+g)* 
x*(-c^2*d*x^2+d)^(1/2)/g^3/(-c^2*x^2+1)^(1/2)-1/4*b*c^3*d*f*x^2*(-c^2*d*x^ 
2+d)^(1/2)/g^2/(-c^2*x^2+1)^(1/2)+1/9*b*c^3*d*x^3*(-c^2*d*x^2+d)^(1/2)/g/( 
-c^2*x^2+1)^(1/2)+1/4*c*d*f*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/g^2 
/(-c^2*x^2+1)^(1/2)-1/2*c*d*(c*f-g)*(c*f+g)*x*(a+b*arcsin(c*x))^2*(-c^2*d* 
x^2+d)^(1/2)/b/g^3/(-c^2*x^2+1)^(1/2)-1/2*d*(c^2*f^2-g^2)^2*(a+b*arcsin(c* 
x))^2*(-c^2*d*x^2+d)^(1/2)/b/c/g^4/(g*x+f)/(-c^2*x^2+1)^(1/2)+a*d*(c^2*f^2 
-g^2)^(3/2)*arctan((c^2*f*x+g)/(c^2*f^2-g^2)^(1/2)/(-c^2*x^2+1)^(1/2))*(-c 
^2*d*x^2+d)^(1/2)/g^4/(-c^2*x^2+1)^(1/2)-I*b*d*(c^2*f^2-g^2)^(3/2)*arcsin( 
c*x)*ln(1-I*(I*c*x+(-c^2*x^2+1)^(1/2))*g/(c*f-(c^2*f^2-g^2)^(1/2)))*(-c^2* 
d*x^2+d)^(1/2)/g^4/(-c^2*x^2+1)^(1/2)+I*b*d*(c^2*f^2-g^2)^(3/2)*arcsin(c*x 
)*ln(1-I*(I*c*x+(-c^2*x^2+1)^(1/2))*g/(c*f+(c^2*f^2-g^2)^(1/2)))*(-c^2*d*x 
^2+d)^(1/2)/g^4/(-c^2*x^2+1)^(1/2)-b*d*(c^2*f^2-g^2)^(3/2)*polylog(2,I*(I* 
c*x+(-c^2*x^2+1)^(1/2))*g/(c*f-(c^2*f^2-g^2)^(1/2)))*(-c^2*d*x^2+d)^(1/2)/ 
g^4/(-c^2*x^2+1)^(1/2)+b*d*(c^2*f^2-g^2)^(3/2)*polylog(2,I*(I*c*x+(-c^2*x^ 
2+1)^(1/2))*g/(c*f+(c^2*f^2-g^2)^(1/2)))*(-c^2*d*x^2+d)^(1/2)/g^4/(-c^2*x^ 
2+1)^(1/2)-1/2*d*(c*f-g)*(c*f+g)*(a+b*arcsin(c*x))^2*(-c^2*x^2+1)^(1/2)...
 
3.1.39.2 Mathematica [A] (verified)

Time = 1.19 (sec) , antiderivative size = 507, normalized size of antiderivative = 0.47 \[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{f+g x} \, dx=\frac {d \sqrt {d-c^2 d x^2} \left (-9 b c^3 f x^2+4 b c g x \left (-3+c^2 x^2\right )+18 c^2 f x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))+12 g \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))+\frac {9 c f (a+b \arcsin (c x))^2}{b}+\frac {18 \left (c^2 f^2-g^2\right ) \left (-1+c^2 x^2\right ) (a+b \arcsin (c x))^2}{b c (f+g x)}-\frac {18 \left (c^2 f^2-g^2\right ) \left (\left (c^2 f^2-g^2\right ) (a+b \arcsin (c x))^2+c^2 g x (f+g x) (a+b \arcsin (c x))^2-2 b c (f+g x) \left (b c g x-g \sqrt {1-c^2 x^2} (a+b \arcsin (c x))-i \sqrt {c^2 f^2-g^2} \left ((a+b \arcsin (c x)) \left (\log \left (1+\frac {i e^{i \arcsin (c x)} g}{-c f+\sqrt {c^2 f^2-g^2}}\right )-\log \left (1-\frac {i e^{i \arcsin (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )\right )-i b \operatorname {PolyLog}\left (2,\frac {i e^{i \arcsin (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )+i b \operatorname {PolyLog}\left (2,\frac {i e^{i \arcsin (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )\right )\right )\right )}{b c g^2 (f+g x)}\right )}{36 g^2 \sqrt {1-c^2 x^2}} \]

input
Integrate[((d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/(f + g*x),x]
 
output
(d*Sqrt[d - c^2*d*x^2]*(-9*b*c^3*f*x^2 + 4*b*c*g*x*(-3 + c^2*x^2) + 18*c^2 
*f*x*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]) + 12*g*(1 - c^2*x^2)^(3/2)*(a + 
 b*ArcSin[c*x]) + (9*c*f*(a + b*ArcSin[c*x])^2)/b + (18*(c^2*f^2 - g^2)*(- 
1 + c^2*x^2)*(a + b*ArcSin[c*x])^2)/(b*c*(f + g*x)) - (18*(c^2*f^2 - g^2)* 
((c^2*f^2 - g^2)*(a + b*ArcSin[c*x])^2 + c^2*g*x*(f + g*x)*(a + b*ArcSin[c 
*x])^2 - 2*b*c*(f + g*x)*(b*c*g*x - g*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x] 
) - I*Sqrt[c^2*f^2 - g^2]*((a + b*ArcSin[c*x])*(Log[1 + (I*E^(I*ArcSin[c*x 
])*g)/(-(c*f) + Sqrt[c^2*f^2 - g^2])] - Log[1 - (I*E^(I*ArcSin[c*x])*g)/(c 
*f + Sqrt[c^2*f^2 - g^2])]) - I*b*PolyLog[2, (I*E^(I*ArcSin[c*x])*g)/(c*f 
- Sqrt[c^2*f^2 - g^2])] + I*b*PolyLog[2, (I*E^(I*ArcSin[c*x])*g)/(c*f + Sq 
rt[c^2*f^2 - g^2])]))))/(b*c*g^2*(f + g*x))))/(36*g^2*Sqrt[1 - c^2*x^2])
 
3.1.39.3 Rubi [A] (verified)

Time = 2.34 (sec) , antiderivative size = 709, normalized size of antiderivative = 0.66, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {5276, 5266, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{f+g x} \, dx\)

\(\Big \downarrow \) 5276

\(\displaystyle \frac {d \sqrt {d-c^2 d x^2} \int \frac {\left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))}{f+g x}dx}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5266

\(\displaystyle \frac {d \sqrt {d-c^2 d x^2} \int \left (-\frac {x \sqrt {1-c^2 x^2} (a+b \arcsin (c x)) c^2}{g}+\frac {f \sqrt {1-c^2 x^2} (a+b \arcsin (c x)) c^2}{g^2}+\frac {\left (g^2-c^2 f^2\right ) \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{g^2 (f+g x)}\right )dx}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {d \sqrt {d-c^2 d x^2} \left (-\frac {\left (1-c^2 x^2\right ) \left (c^2 f^2-g^2\right ) (a+b \arcsin (c x))^2}{2 b c g^2 (f+g x)}-\frac {\left (c^2 f^2-g^2\right )^2 (a+b \arcsin (c x))^2}{2 b c g^4 (f+g x)}-\frac {c x \left (c^2 f^2-g^2\right ) (a+b \arcsin (c x))^2}{2 b g^3}+\frac {c^2 f x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{2 g^2}+\frac {\left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))}{3 g}+\frac {c f (a+b \arcsin (c x))^2}{4 b g^2}+\frac {a \left (c^2 f^2-g^2\right )^{3/2} \arctan \left (\frac {c^2 f x+g}{\sqrt {1-c^2 x^2} \sqrt {c^2 f^2-g^2}}\right )}{g^4}-\frac {a \sqrt {1-c^2 x^2} (c f-g) (c f+g)}{g^3}-\frac {b \left (c^2 f^2-g^2\right )^{3/2} \operatorname {PolyLog}\left (2,\frac {i e^{i \arcsin (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )}{g^4}+\frac {b \left (c^2 f^2-g^2\right )^{3/2} \operatorname {PolyLog}\left (2,\frac {i e^{i \arcsin (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )}{g^4}-\frac {i b \arcsin (c x) \left (c^2 f^2-g^2\right )^{3/2} \log \left (1-\frac {i g e^{i \arcsin (c x)}}{c f-\sqrt {c^2 f^2-g^2}}\right )}{g^4}+\frac {i b \arcsin (c x) \left (c^2 f^2-g^2\right )^{3/2} \log \left (1-\frac {i g e^{i \arcsin (c x)}}{\sqrt {c^2 f^2-g^2}+c f}\right )}{g^4}-\frac {b \sqrt {1-c^2 x^2} \arcsin (c x) (c f-g) (c f+g)}{g^3}-\frac {b c^3 f x^2}{4 g^2}+\frac {b c^3 x^3}{9 g}+\frac {b c x \left (c^2 f^2-g^2\right )}{g^3}-\frac {b c x}{3 g}\right )}{\sqrt {1-c^2 x^2}}\)

input
Int[((d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/(f + g*x),x]
 
output
(d*Sqrt[d - c^2*d*x^2]*(-1/3*(b*c*x)/g + (b*c*(c^2*f^2 - g^2)*x)/g^3 - (b* 
c^3*f*x^2)/(4*g^2) + (b*c^3*x^3)/(9*g) - (a*(c*f - g)*(c*f + g)*Sqrt[1 - c 
^2*x^2])/g^3 - (b*(c*f - g)*(c*f + g)*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/g^3 + 
 (c^2*f*x*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(2*g^2) + ((1 - c^2*x^2)^ 
(3/2)*(a + b*ArcSin[c*x]))/(3*g) + (c*f*(a + b*ArcSin[c*x])^2)/(4*b*g^2) - 
 (c*(c^2*f^2 - g^2)*x*(a + b*ArcSin[c*x])^2)/(2*b*g^3) - ((c^2*f^2 - g^2)^ 
2*(a + b*ArcSin[c*x])^2)/(2*b*c*g^4*(f + g*x)) - ((c^2*f^2 - g^2)*(1 - c^2 
*x^2)*(a + b*ArcSin[c*x])^2)/(2*b*c*g^2*(f + g*x)) + (a*(c^2*f^2 - g^2)^(3 
/2)*ArcTan[(g + c^2*f*x)/(Sqrt[c^2*f^2 - g^2]*Sqrt[1 - c^2*x^2])])/g^4 - ( 
I*b*(c^2*f^2 - g^2)^(3/2)*ArcSin[c*x]*Log[1 - (I*E^(I*ArcSin[c*x])*g)/(c*f 
 - Sqrt[c^2*f^2 - g^2])])/g^4 + (I*b*(c^2*f^2 - g^2)^(3/2)*ArcSin[c*x]*Log 
[1 - (I*E^(I*ArcSin[c*x])*g)/(c*f + Sqrt[c^2*f^2 - g^2])])/g^4 - (b*(c^2*f 
^2 - g^2)^(3/2)*PolyLog[2, (I*E^(I*ArcSin[c*x])*g)/(c*f - Sqrt[c^2*f^2 - g 
^2])])/g^4 + (b*(c^2*f^2 - g^2)^(3/2)*PolyLog[2, (I*E^(I*ArcSin[c*x])*g)/( 
c*f + Sqrt[c^2*f^2 - g^2])])/g^4))/Sqrt[1 - c^2*x^2]
 

3.1.39.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5266
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_ 
) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[Sqrt[d + e*x^2]*(a 
 + b*ArcSin[c*x])^n, (f + g*x)^m*(d + e*x^2)^(p - 1/2), x], x] /; FreeQ[{a, 
 b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IGtQ[p + 1/2, 
 0] && GtQ[d, 0] && IGtQ[n, 0]
 

rule 5276
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_ 
) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^ 
p]   Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ 
[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && Intege 
rQ[p - 1/2] &&  !GtQ[d, 0]
 
3.1.39.4 Maple [A] (verified)

Time = 0.64 (sec) , antiderivative size = 1546, normalized size of antiderivative = 1.44

method result size
default \(\text {Expression too large to display}\) \(1546\)
parts \(\text {Expression too large to display}\) \(1546\)

input
int((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/(g*x+f),x,method=_RETURNVERBOSE 
)
 
output
a/g*(1/3*(-(x+f/g)^2*c^2*d+2*c^2*d*f/g*(x+f/g)-d*(c^2*f^2-g^2)/g^2)^(3/2)+ 
c^2*d*f/g*(-1/4*(-2*(x+f/g)*c^2*d+2*c^2*d*f/g)/c^2/d*(-(x+f/g)^2*c^2*d+2*c 
^2*d*f/g*(x+f/g)-d*(c^2*f^2-g^2)/g^2)^(1/2)-1/8*(4*c^2*d^2*(c^2*f^2-g^2)/g 
^2-4*c^4*d^2*f^2/g^2)/c^2/d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-(x+f/g) 
^2*c^2*d+2*c^2*d*f/g*(x+f/g)-d*(c^2*f^2-g^2)/g^2)^(1/2)))-d*(c^2*f^2-g^2)/ 
g^2*((-(x+f/g)^2*c^2*d+2*c^2*d*f/g*(x+f/g)-d*(c^2*f^2-g^2)/g^2)^(1/2)+c^2* 
d*f/g/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-(x+f/g)^2*c^2*d+2*c^2*d*f/g*( 
x+f/g)-d*(c^2*f^2-g^2)/g^2)^(1/2))+d*(c^2*f^2-g^2)/g^2/(-d*(c^2*f^2-g^2)/g 
^2)^(1/2)*ln((-2*d*(c^2*f^2-g^2)/g^2+2*c^2*d*f/g*(x+f/g)+2*(-d*(c^2*f^2-g^ 
2)/g^2)^(1/2)*(-(x+f/g)^2*c^2*d+2*c^2*d*f/g*(x+f/g)-d*(c^2*f^2-g^2)/g^2)^( 
1/2))/(x+f/g))))+b*(1/4*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/(c^2*x^2 
-1)*arcsin(c*x)^2*f*(2*c^2*f^2-3*g^2)*d*c/g^4-1/72*(-d*(c^2*x^2-1))^(1/2)* 
(4*c^4*x^4-5*c^2*x^2-4*I*c^3*x^3*(-c^2*x^2+1)^(1/2)+3*I*(-c^2*x^2+1)^(1/2) 
*x*c+1)*(I+3*arcsin(c*x))*d/(c^2*x^2-1)/g+1/16*(-d*(c^2*x^2-1))^(1/2)*(-2* 
I*(-c^2*x^2+1)^(1/2)*x^2*c^2+2*c^3*x^3+I*(-c^2*x^2+1)^(1/2)-2*c*x)*f*(I+2* 
arcsin(c*x))*d*c/(c^2*x^2-1)/g^2-1/8*(-d*(c^2*x^2-1))^(1/2)*(c^2*x^2-I*(-c 
^2*x^2+1)^(1/2)*x*c-1)*(4*c^2*f^2-5*g^2)*(arcsin(c*x)+I)*d/(c^2*x^2-1)/g^3 
-1/8*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*(4*c^2*f^ 
2-5*g^2)*(arcsin(c*x)-I)*d/(c^2*x^2-1)/g^3+1/16*(-d*(c^2*x^2-1))^(1/2)*(2* 
I*(-c^2*x^2+1)^(1/2)*x^2*c^2+2*c^3*x^3-I*(-c^2*x^2+1)^(1/2)-2*c*x)*f*(-...
 
3.1.39.5 Fricas [F]

\[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{f+g x} \, dx=\int { \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \arcsin \left (c x\right ) + a\right )}}{g x + f} \,d x } \]

input
integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/(g*x+f),x, algorithm="fri 
cas")
 
output
integral(-(a*c^2*d*x^2 - a*d + (b*c^2*d*x^2 - b*d)*arcsin(c*x))*sqrt(-c^2* 
d*x^2 + d)/(g*x + f), x)
 
3.1.39.6 Sympy [F]

\[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{f+g x} \, dx=\int \frac {\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asin}{\left (c x \right )}\right )}{f + g x}\, dx \]

input
integrate((-c**2*d*x**2+d)**(3/2)*(a+b*asin(c*x))/(g*x+f),x)
 
output
Integral((-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*asin(c*x))/(f + g*x), x)
 
3.1.39.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{f+g x} \, dx=\text {Exception raised: ValueError} \]

input
integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/(g*x+f),x, algorithm="max 
ima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(g-c*f>0)', see `assume?` for mor 
e details)
 
3.1.39.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{f+g x} \, dx=\text {Exception raised: TypeError} \]

input
integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/(g*x+f),x, algorithm="gia 
c")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.1.39.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{f+g x} \, dx=\int \frac {\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2}}{f+g\,x} \,d x \]

input
int(((a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2))/(f + g*x),x)
 
output
int(((a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2))/(f + g*x), x)