3.3.20 \(\int \frac {e^{\frac {1}{2} i \arctan (a+b x)}}{x^2} \, dx\) [220]

3.3.20.1 Optimal result
3.3.20.2 Mathematica [C] (verified)
3.3.20.3 Rubi [A] (verified)
3.3.20.4 Maple [F]
3.3.20.5 Fricas [B] (verification not implemented)
3.3.20.6 Sympy [F(-1)]
3.3.20.7 Maxima [F]
3.3.20.8 Giac [F(-2)]
3.3.20.9 Mupad [F(-1)]

3.3.20.1 Optimal result

Integrand size = 18, antiderivative size = 205 \[ \int \frac {e^{\frac {1}{2} i \arctan (a+b x)}}{x^2} \, dx=-\frac {(i+a+b x) \sqrt [4]{1+i (a+b x)}}{(i+a) x \sqrt [4]{1-i (a+b x)}}+\frac {i b \arctan \left (\frac {\sqrt [4]{i+a} \sqrt [4]{1+i (a+b x)}}{\sqrt [4]{i-a} \sqrt [4]{1-i (a+b x)}}\right )}{(i-a)^{3/4} (i+a)^{5/4}}+\frac {i b \text {arctanh}\left (\frac {\sqrt [4]{i+a} \sqrt [4]{1+i (a+b x)}}{\sqrt [4]{i-a} \sqrt [4]{1-i (a+b x)}}\right )}{(i-a)^{3/4} (i+a)^{5/4}} \]

output
-(I+a+b*x)*(1+I*(b*x+a))^(1/4)/(I+a)/x/(1-I*(b*x+a))^(1/4)+I*b*arctan((I+a 
)^(1/4)*(1+I*(b*x+a))^(1/4)/(I-a)^(1/4)/(1-I*(b*x+a))^(1/4))/(I-a)^(3/4)/( 
I+a)^(5/4)+I*b*arctanh((I+a)^(1/4)*(1+I*(b*x+a))^(1/4)/(I-a)^(1/4)/(1-I*(b 
*x+a))^(1/4))/(I-a)^(3/4)/(I+a)^(5/4)
 
3.3.20.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.03 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.54 \[ \int \frac {e^{\frac {1}{2} i \arctan (a+b x)}}{x^2} \, dx=\frac {(-i (i+a+b x))^{3/4} \left (3 (i+a) (-i+a+b x)+2 i b x \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},\frac {1+a^2-i b x+a b x}{1+a^2+i b x+a b x}\right )\right )}{3 (i+a)^2 x (1+i a+i b x)^{3/4}} \]

input
Integrate[E^((I/2)*ArcTan[a + b*x])/x^2,x]
 
output
(((-I)*(I + a + b*x))^(3/4)*(3*(I + a)*(-I + a + b*x) + (2*I)*b*x*Hypergeo 
metric2F1[3/4, 1, 7/4, (1 + a^2 - I*b*x + a*b*x)/(1 + a^2 + I*b*x + a*b*x) 
]))/(3*(I + a)^2*x*(1 + I*a + I*b*x)^(3/4))
 
3.3.20.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.27, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5617, 795, 817, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\frac {1}{2} i \arctan (a+b x)}}{x^2} \, dx\)

\(\Big \downarrow \) 5617

\(\displaystyle 8 i b \int \frac {1-i (a+b x)}{(i (a+b x)+1) \left (-i a-\frac {(i a+1) (1-i (a+b x))}{i (a+b x)+1}+1\right )^2}d\frac {\sqrt [4]{i (a+b x)+1}}{\sqrt [4]{1-i (a+b x)}}\)

\(\Big \downarrow \) 795

\(\displaystyle 8 i b \int \frac {i (a+b x)+1}{(1-i (a+b x)) \left (-i a+\frac {(1-i a) (i (a+b x)+1)}{1-i (a+b x)}-1\right )^2}d\frac {\sqrt [4]{i (a+b x)+1}}{\sqrt [4]{1-i (a+b x)}}\)

\(\Big \downarrow \) 817

\(\displaystyle 8 i b \left (\frac {\int \frac {1}{-i a+\frac {(1-i a) (i (a+b x)+1)}{1-i (a+b x)}-1}d\frac {\sqrt [4]{i (a+b x)+1}}{\sqrt [4]{1-i (a+b x)}}}{4 (1-i a)}+\frac {\sqrt [4]{1+i (a+b x)}}{4 (1-i a) \sqrt [4]{1-i (a+b x)} \left (-\frac {(1-i a) (1+i (a+b x))}{1-i (a+b x)}+i a+1\right )}\right )\)

\(\Big \downarrow \) 756

\(\displaystyle 8 i b \left (\frac {-\frac {i \int \frac {1}{\sqrt {i-a}-\frac {\sqrt {a+i} \sqrt {i (a+b x)+1}}{\sqrt {1-i (a+b x)}}}d\frac {\sqrt [4]{i (a+b x)+1}}{\sqrt [4]{1-i (a+b x)}}}{2 \sqrt {-a+i}}-\frac {i \int \frac {1}{\sqrt {i-a}+\frac {\sqrt {a+i} \sqrt {i (a+b x)+1}}{\sqrt {1-i (a+b x)}}}d\frac {\sqrt [4]{i (a+b x)+1}}{\sqrt [4]{1-i (a+b x)}}}{2 \sqrt {-a+i}}}{4 (1-i a)}+\frac {\sqrt [4]{1+i (a+b x)}}{4 (1-i a) \sqrt [4]{1-i (a+b x)} \left (-\frac {(1-i a) (1+i (a+b x))}{1-i (a+b x)}+i a+1\right )}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 8 i b \left (\frac {-\frac {i \int \frac {1}{\sqrt {i-a}-\frac {\sqrt {a+i} \sqrt {i (a+b x)+1}}{\sqrt {1-i (a+b x)}}}d\frac {\sqrt [4]{i (a+b x)+1}}{\sqrt [4]{1-i (a+b x)}}}{2 \sqrt {-a+i}}-\frac {i \arctan \left (\frac {\sqrt [4]{a+i} \sqrt [4]{1+i (a+b x)}}{\sqrt [4]{-a+i} \sqrt [4]{1-i (a+b x)}}\right )}{2 (-a+i)^{3/4} \sqrt [4]{a+i}}}{4 (1-i a)}+\frac {\sqrt [4]{1+i (a+b x)}}{4 (1-i a) \sqrt [4]{1-i (a+b x)} \left (-\frac {(1-i a) (1+i (a+b x))}{1-i (a+b x)}+i a+1\right )}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 8 i b \left (\frac {-\frac {i \arctan \left (\frac {\sqrt [4]{a+i} \sqrt [4]{1+i (a+b x)}}{\sqrt [4]{-a+i} \sqrt [4]{1-i (a+b x)}}\right )}{2 (-a+i)^{3/4} \sqrt [4]{a+i}}-\frac {i \text {arctanh}\left (\frac {\sqrt [4]{a+i} \sqrt [4]{1+i (a+b x)}}{\sqrt [4]{-a+i} \sqrt [4]{1-i (a+b x)}}\right )}{2 (-a+i)^{3/4} \sqrt [4]{a+i}}}{4 (1-i a)}+\frac {\sqrt [4]{1+i (a+b x)}}{4 (1-i a) \sqrt [4]{1-i (a+b x)} \left (-\frac {(1-i a) (1+i (a+b x))}{1-i (a+b x)}+i a+1\right )}\right )\)

input
Int[E^((I/2)*ArcTan[a + b*x])/x^2,x]
 
output
(8*I)*b*((1 + I*(a + b*x))^(1/4)/(4*(1 - I*a)*(1 - I*(a + b*x))^(1/4)*(1 + 
 I*a - ((1 - I*a)*(1 + I*(a + b*x)))/(1 - I*(a + b*x)))) + (((-1/2*I)*ArcT 
an[((I + a)^(1/4)*(1 + I*(a + b*x))^(1/4))/((I - a)^(1/4)*(1 - I*(a + b*x) 
)^(1/4))])/((I - a)^(3/4)*(I + a)^(1/4)) - ((I/2)*ArcTanh[((I + a)^(1/4)*( 
1 + I*(a + b*x))^(1/4))/((I - a)^(1/4)*(1 - I*(a + b*x))^(1/4))])/((I - a) 
^(3/4)*(I + a)^(1/4)))/(4*(1 - I*a)))
 

3.3.20.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 795
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)* 
(b + a/x^n)^p, x] /; FreeQ[{a, b, m, n}, x] && IntegerQ[p] && NegQ[n]
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 5617
Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_))*(x_)^(m_), x_Symbol] :> Simp 
[4/(I^m*n*b^(m + 1)*c^(m + 1))   Subst[Int[x^(2/(I*n))*((1 - I*a*c - (1 + I 
*a*c)*x^(2/(I*n)))^m/(1 + x^(2/(I*n)))^(m + 2)), x], x, (1 - I*c*(a + b*x)) 
^(I*(n/2))/(1 + I*c*(a + b*x))^(I*(n/2))], x] /; FreeQ[{a, b, c}, x] && ILt 
Q[m, 0] && LtQ[-1, I*n, 1]
 
3.3.20.4 Maple [F]

\[\int \frac {\sqrt {\frac {1+i \left (b x +a \right )}{\sqrt {1+\left (b x +a \right )^{2}}}}}{x^{2}}d x\]

input
int(((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2))^(1/2)/x^2,x)
 
output
int(((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2))^(1/2)/x^2,x)
 
3.3.20.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 598 vs. \(2 (141) = 282\).

Time = 0.27 (sec) , antiderivative size = 598, normalized size of antiderivative = 2.92 \[ \int \frac {e^{\frac {1}{2} i \arctan (a+b x)}}{x^2} \, dx=\frac {\left (-\frac {b^{4}}{a^{8} + 2 i \, a^{7} + 2 \, a^{6} + 6 i \, a^{5} + 6 i \, a^{3} - 2 \, a^{2} + 2 i \, a - 1}\right )^{\frac {1}{4}} {\left (-i \, a + 1\right )} x \log \left (\frac {b \sqrt {\frac {i \, \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b x + a + i}} + \left (-\frac {b^{4}}{a^{8} + 2 i \, a^{7} + 2 \, a^{6} + 6 i \, a^{5} + 6 i \, a^{3} - 2 \, a^{2} + 2 i \, a - 1}\right )^{\frac {1}{4}} {\left (a^{2} + 1\right )}}{b}\right ) + \left (-\frac {b^{4}}{a^{8} + 2 i \, a^{7} + 2 \, a^{6} + 6 i \, a^{5} + 6 i \, a^{3} - 2 \, a^{2} + 2 i \, a - 1}\right )^{\frac {1}{4}} {\left (i \, a - 1\right )} x \log \left (\frac {b \sqrt {\frac {i \, \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b x + a + i}} - \left (-\frac {b^{4}}{a^{8} + 2 i \, a^{7} + 2 \, a^{6} + 6 i \, a^{5} + 6 i \, a^{3} - 2 \, a^{2} + 2 i \, a - 1}\right )^{\frac {1}{4}} {\left (a^{2} + 1\right )}}{b}\right ) - \left (-\frac {b^{4}}{a^{8} + 2 i \, a^{7} + 2 \, a^{6} + 6 i \, a^{5} + 6 i \, a^{3} - 2 \, a^{2} + 2 i \, a - 1}\right )^{\frac {1}{4}} {\left (a + i\right )} x \log \left (\frac {b \sqrt {\frac {i \, \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b x + a + i}} - \left (-\frac {b^{4}}{a^{8} + 2 i \, a^{7} + 2 \, a^{6} + 6 i \, a^{5} + 6 i \, a^{3} - 2 \, a^{2} + 2 i \, a - 1}\right )^{\frac {1}{4}} {\left (i \, a^{2} + i\right )}}{b}\right ) + \left (-\frac {b^{4}}{a^{8} + 2 i \, a^{7} + 2 \, a^{6} + 6 i \, a^{5} + 6 i \, a^{3} - 2 \, a^{2} + 2 i \, a - 1}\right )^{\frac {1}{4}} {\left (a + i\right )} x \log \left (\frac {b \sqrt {\frac {i \, \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b x + a + i}} - \left (-\frac {b^{4}}{a^{8} + 2 i \, a^{7} + 2 \, a^{6} + 6 i \, a^{5} + 6 i \, a^{3} - 2 \, a^{2} + 2 i \, a - 1}\right )^{\frac {1}{4}} {\left (-i \, a^{2} - i\right )}}{b}\right ) - 2 \, {\left (b x + a + i\right )} \sqrt {\frac {i \, \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b x + a + i}}}{2 \, {\left (a + i\right )} x} \]

input
integrate(((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2))^(1/2)/x^2,x, algorithm="fric 
as")
 
output
1/2*((-b^4/(a^8 + 2*I*a^7 + 2*a^6 + 6*I*a^5 + 6*I*a^3 - 2*a^2 + 2*I*a - 1) 
)^(1/4)*(-I*a + 1)*x*log((b*sqrt(I*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)/(b*x 
+ a + I)) + (-b^4/(a^8 + 2*I*a^7 + 2*a^6 + 6*I*a^5 + 6*I*a^3 - 2*a^2 + 2*I 
*a - 1))^(1/4)*(a^2 + 1))/b) + (-b^4/(a^8 + 2*I*a^7 + 2*a^6 + 6*I*a^5 + 6* 
I*a^3 - 2*a^2 + 2*I*a - 1))^(1/4)*(I*a - 1)*x*log((b*sqrt(I*sqrt(b^2*x^2 + 
 2*a*b*x + a^2 + 1)/(b*x + a + I)) - (-b^4/(a^8 + 2*I*a^7 + 2*a^6 + 6*I*a^ 
5 + 6*I*a^3 - 2*a^2 + 2*I*a - 1))^(1/4)*(a^2 + 1))/b) - (-b^4/(a^8 + 2*I*a 
^7 + 2*a^6 + 6*I*a^5 + 6*I*a^3 - 2*a^2 + 2*I*a - 1))^(1/4)*(a + I)*x*log(( 
b*sqrt(I*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)/(b*x + a + I)) - (-b^4/(a^8 + 2 
*I*a^7 + 2*a^6 + 6*I*a^5 + 6*I*a^3 - 2*a^2 + 2*I*a - 1))^(1/4)*(I*a^2 + I) 
)/b) + (-b^4/(a^8 + 2*I*a^7 + 2*a^6 + 6*I*a^5 + 6*I*a^3 - 2*a^2 + 2*I*a - 
1))^(1/4)*(a + I)*x*log((b*sqrt(I*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)/(b*x + 
 a + I)) - (-b^4/(a^8 + 2*I*a^7 + 2*a^6 + 6*I*a^5 + 6*I*a^3 - 2*a^2 + 2*I* 
a - 1))^(1/4)*(-I*a^2 - I))/b) - 2*(b*x + a + I)*sqrt(I*sqrt(b^2*x^2 + 2*a 
*b*x + a^2 + 1)/(b*x + a + I)))/((a + I)*x)
 
3.3.20.6 Sympy [F(-1)]

Timed out. \[ \int \frac {e^{\frac {1}{2} i \arctan (a+b x)}}{x^2} \, dx=\text {Timed out} \]

input
integrate(((1+I*(b*x+a))/(1+(b*x+a)**2)**(1/2))**(1/2)/x**2,x)
 
output
Timed out
 
3.3.20.7 Maxima [F]

\[ \int \frac {e^{\frac {1}{2} i \arctan (a+b x)}}{x^2} \, dx=\int { \frac {\sqrt {\frac {i \, b x + i \, a + 1}{\sqrt {{\left (b x + a\right )}^{2} + 1}}}}{x^{2}} \,d x } \]

input
integrate(((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2))^(1/2)/x^2,x, algorithm="maxi 
ma")
 
output
integrate(sqrt((I*b*x + I*a + 1)/sqrt((b*x + a)^2 + 1))/x^2, x)
 
3.3.20.8 Giac [F(-2)]

Exception generated. \[ \int \frac {e^{\frac {1}{2} i \arctan (a+b x)}}{x^2} \, dx=\text {Exception raised: TypeError} \]

input
integrate(((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2))^(1/2)/x^2,x, algorithm="giac 
")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:The choice was done assuming 0=[0,0 
,0]Warning, replacing 0 by -27, a substitution variable should perhaps be 
purged.Wa
 
3.3.20.9 Mupad [F(-1)]

Timed out. \[ \int \frac {e^{\frac {1}{2} i \arctan (a+b x)}}{x^2} \, dx=\int \frac {\sqrt {\frac {1+a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}}{\sqrt {{\left (a+b\,x\right )}^2+1}}}}{x^2} \,d x \]

input
int(((a*1i + b*x*1i + 1)/((a + b*x)^2 + 1)^(1/2))^(1/2)/x^2,x)
 
output
int(((a*1i + b*x*1i + 1)/((a + b*x)^2 + 1)^(1/2))^(1/2)/x^2, x)