3.4.45 \(\int \frac {e^{n \arctan (a x)}}{x^2 (c+a^2 c x^2)} \, dx\) [345]

3.4.45.1 Optimal result
3.4.45.2 Mathematica [A] (verified)
3.4.45.3 Rubi [A] (verified)
3.4.45.4 Maple [F]
3.4.45.5 Fricas [F]
3.4.45.6 Sympy [F]
3.4.45.7 Maxima [F]
3.4.45.8 Giac [F]
3.4.45.9 Mupad [F(-1)]

3.4.45.1 Optimal result

Integrand size = 24, antiderivative size = 90 \[ \int \frac {e^{n \arctan (a x)}}{x^2 \left (c+a^2 c x^2\right )} \, dx=\frac {i a e^{n \arctan (a x)} (i+n)}{c n}-\frac {e^{n \arctan (a x)}}{c x}-\frac {2 i a e^{n \arctan (a x)} \operatorname {Hypergeometric2F1}\left (1,-\frac {i n}{2},1-\frac {i n}{2},-1+\frac {2 i}{i+a x}\right )}{c} \]

output
I*a*exp(n*arctan(a*x))*(I+n)/c/n-exp(n*arctan(a*x))/c/x-2*I*a*exp(n*arctan 
(a*x))*hypergeom([1, -1/2*I*n],[1-1/2*I*n],-1+2*I/(I+a*x))/c
 
3.4.45.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.58 \[ \int \frac {e^{n \arctan (a x)}}{x^2 \left (c+a^2 c x^2\right )} \, dx=\frac {(1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}} \left ((-2 i+n) (1+i a x) (i a x+n (i+a x))+2 a n^2 x (1-i a x) \operatorname {Hypergeometric2F1}\left (1,1+\frac {i n}{2},2+\frac {i n}{2},\frac {i+a x}{i-a x}\right )\right )}{c n (-2 i+n) x (-i+a x)} \]

input
Integrate[E^(n*ArcTan[a*x])/(x^2*(c + a^2*c*x^2)),x]
 
output
((1 - I*a*x)^((I/2)*n)*((-2*I + n)*(1 + I*a*x)*(I*a*x + n*(I + a*x)) + 2*a 
*n^2*x*(1 - I*a*x)*Hypergeometric2F1[1, 1 + (I/2)*n, 2 + (I/2)*n, (I + a*x 
)/(I - a*x)]))/(c*n*(-2*I + n)*x*(1 + I*a*x)^((I/2)*n)*(-I + a*x))
 
3.4.45.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.80, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5605, 114, 25, 27, 172, 25, 27, 141}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{n \arctan (a x)}}{x^2 \left (a^2 c x^2+c\right )} \, dx\)

\(\Big \downarrow \) 5605

\(\displaystyle \frac {\int \frac {(1-i a x)^{\frac {i n}{2}-1} (i a x+1)^{-\frac {i n}{2}-1}}{x^2}dx}{c}\)

\(\Big \downarrow \) 114

\(\displaystyle \frac {-\int -\frac {a (n-a x) (1-i a x)^{\frac {i n}{2}-1} (i a x+1)^{-\frac {i n}{2}-1}}{x}dx-\frac {(1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{x}}{c}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {a (n-a x) (1-i a x)^{\frac {i n}{2}-1} (i a x+1)^{-\frac {i n}{2}-1}}{x}dx-\frac {(1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{x}}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a \int \frac {(n-a x) (1-i a x)^{\frac {i n}{2}-1} (i a x+1)^{-\frac {i n}{2}-1}}{x}dx-\frac {(1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{x}}{c}\)

\(\Big \downarrow \) 172

\(\displaystyle \frac {a \left (-\frac {\int -\frac {a n^2 (1-i a x)^{\frac {i n}{2}} (i a x+1)^{-\frac {i n}{2}-1}}{x}dx}{a n}-\frac {(1-i n) (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{n}\right )-\frac {(1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{x}}{c}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {a \left (\frac {\int \frac {a n^2 (1-i a x)^{\frac {i n}{2}} (i a x+1)^{-\frac {i n}{2}-1}}{x}dx}{a n}-\frac {(1-i n) (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{n}\right )-\frac {(1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{x}}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a \left (n \int \frac {(1-i a x)^{\frac {i n}{2}} (i a x+1)^{-\frac {i n}{2}-1}}{x}dx-\frac {(1-i n) (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{n}\right )-\frac {(1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{x}}{c}\)

\(\Big \downarrow \) 141

\(\displaystyle \frac {a \left (-2 i (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}} \operatorname {Hypergeometric2F1}\left (1,-\frac {i n}{2},1-\frac {i n}{2},\frac {i a x+1}{1-i a x}\right )-\frac {(1-i n) (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{n}\right )-\frac {(1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{x}}{c}\)

input
Int[E^(n*ArcTan[a*x])/(x^2*(c + a^2*c*x^2)),x]
 
output
(-((1 - I*a*x)^((I/2)*n)/(x*(1 + I*a*x)^((I/2)*n))) + a*(-(((1 - I*n)*(1 - 
 I*a*x)^((I/2)*n))/(n*(1 + I*a*x)^((I/2)*n))) - ((2*I)*(1 - I*a*x)^((I/2)* 
n)*Hypergeometric2F1[1, (-1/2*I)*n, 1 - (I/2)*n, (1 + I*a*x)/(1 - I*a*x)]) 
/(1 + I*a*x)^((I/2)*n)))/c
 

3.4.45.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 141
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/((m + 1)*(b*e - a*f)^( 
n + 1)*(e + f*x)^(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2, (-(d*e - c*f 
))*((a + b*x)/((b*c - a*d)*(e + f*x)))], x] /; FreeQ[{a, b, c, d, e, f, m, 
p}, x] && EqQ[m + n + p + 2, 0] && ILtQ[n, 0] && (SumSimplerQ[m, 1] ||  !Su 
mSimplerQ[p, 1]) &&  !ILtQ[m, 0]
 

rule 172
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> With[{mnp = Simplify[m + n + p]}, Simp[ 
(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1) 
*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e - a*f)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f 
)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g 
 - a*h)*(mnp + 3)*x, x], x], x] /; ILtQ[mnp + 2, 0] && (SumSimplerQ[m, 1] | 
| ( !(NeQ[n, -1] && SumSimplerQ[n, 1]) &&  !(NeQ[p, -1] && SumSimplerQ[p, 1 
])))] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && NeQ[m, -1]
 

rule 5605
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_ 
Symbol] :> Simp[c^p   Int[x^m*(1 - I*a*x)^(p + I*(n/2))*(1 + I*a*x)^(p - I* 
(n/2)), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[d, a^2*c] && (Integer 
Q[p] || GtQ[c, 0])
 
3.4.45.4 Maple [F]

\[\int \frac {{\mathrm e}^{n \arctan \left (a x \right )}}{x^{2} \left (a^{2} c \,x^{2}+c \right )}d x\]

input
int(exp(n*arctan(a*x))/x^2/(a^2*c*x^2+c),x)
 
output
int(exp(n*arctan(a*x))/x^2/(a^2*c*x^2+c),x)
 
3.4.45.5 Fricas [F]

\[ \int \frac {e^{n \arctan (a x)}}{x^2 \left (c+a^2 c x^2\right )} \, dx=\int { \frac {e^{\left (n \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )} x^{2}} \,d x } \]

input
integrate(exp(n*arctan(a*x))/x^2/(a^2*c*x^2+c),x, algorithm="fricas")
 
output
integral(e^(n*arctan(a*x))/(a^2*c*x^4 + c*x^2), x)
 
3.4.45.6 Sympy [F]

\[ \int \frac {e^{n \arctan (a x)}}{x^2 \left (c+a^2 c x^2\right )} \, dx=\frac {\int \frac {e^{n \operatorname {atan}{\left (a x \right )}}}{a^{2} x^{4} + x^{2}}\, dx}{c} \]

input
integrate(exp(n*atan(a*x))/x**2/(a**2*c*x**2+c),x)
 
output
Integral(exp(n*atan(a*x))/(a**2*x**4 + x**2), x)/c
 
3.4.45.7 Maxima [F]

\[ \int \frac {e^{n \arctan (a x)}}{x^2 \left (c+a^2 c x^2\right )} \, dx=\int { \frac {e^{\left (n \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )} x^{2}} \,d x } \]

input
integrate(exp(n*arctan(a*x))/x^2/(a^2*c*x^2+c),x, algorithm="maxima")
 
output
integrate(e^(n*arctan(a*x))/((a^2*c*x^2 + c)*x^2), x)
 
3.4.45.8 Giac [F]

\[ \int \frac {e^{n \arctan (a x)}}{x^2 \left (c+a^2 c x^2\right )} \, dx=\int { \frac {e^{\left (n \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )} x^{2}} \,d x } \]

input
integrate(exp(n*arctan(a*x))/x^2/(a^2*c*x^2+c),x, algorithm="giac")
 
output
sage0*x
 
3.4.45.9 Mupad [F(-1)]

Timed out. \[ \int \frac {e^{n \arctan (a x)}}{x^2 \left (c+a^2 c x^2\right )} \, dx=\int \frac {{\mathrm {e}}^{n\,\mathrm {atan}\left (a\,x\right )}}{x^2\,\left (c\,a^2\,x^2+c\right )} \,d x \]

input
int(exp(n*atan(a*x))/(x^2*(c + a^2*c*x^2)),x)
 
output
int(exp(n*atan(a*x))/(x^2*(c + a^2*c*x^2)), x)