3.2.86 \(\int \frac {\coth ^4(x)}{a+b \cosh (x)} \, dx\) [186]

3.2.86.1 Optimal result
3.2.86.2 Mathematica [A] (verified)
3.2.86.3 Rubi [C] (verified)
3.2.86.4 Maple [A] (verified)
3.2.86.5 Fricas [B] (verification not implemented)
3.2.86.6 Sympy [F]
3.2.86.7 Maxima [F(-2)]
3.2.86.8 Giac [A] (verification not implemented)
3.2.86.9 Mupad [B] (verification not implemented)

3.2.86.1 Optimal result

Integrand size = 13, antiderivative size = 137 \[ \int \frac {\coth ^4(x)}{a+b \cosh (x)} \, dx=\frac {2 a^4 \text {arctanh}\left (\frac {\sqrt {a-b} \tanh \left (\frac {x}{2}\right )}{\sqrt {a+b}}\right )}{(a-b)^{5/2} (a+b)^{5/2}}-\frac {a^3 \coth (x)}{\left (a^2-b^2\right )^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}+\frac {a^2 b \text {csch}(x)}{\left (a^2-b^2\right )^2}+\frac {b \text {csch}(x)}{a^2-b^2}+\frac {b \text {csch}^3(x)}{3 \left (a^2-b^2\right )} \]

output
2*a^4*arctanh((a-b)^(1/2)*tanh(1/2*x)/(a+b)^(1/2))/(a-b)^(5/2)/(a+b)^(5/2) 
-a^3*coth(x)/(a^2-b^2)^2-1/3*a*coth(x)^3/(a^2-b^2)+a^2*b*csch(x)/(a^2-b^2) 
^2+b*csch(x)/(a^2-b^2)+1/3*b*csch(x)^3/(a^2-b^2)
 
3.2.86.2 Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.96 \[ \int \frac {\coth ^4(x)}{a+b \cosh (x)} \, dx=\frac {1}{24} \left (-\frac {48 a^4 \arctan \left (\frac {(a-b) \tanh \left (\frac {x}{2}\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{5/2}}-\frac {2 (8 a+5 b) \coth \left (\frac {x}{2}\right )}{(a+b)^2}+\frac {8 \text {csch}^3(x) \sinh ^4\left (\frac {x}{2}\right )}{a-b}-\frac {\text {csch}^4\left (\frac {x}{2}\right ) \sinh (x)}{2 (a+b)}+\frac {2 (-8 a+5 b) \tanh \left (\frac {x}{2}\right )}{(a-b)^2}\right ) \]

input
Integrate[Coth[x]^4/(a + b*Cosh[x]),x]
 
output
((-48*a^4*ArcTan[((a - b)*Tanh[x/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(5/2) 
 - (2*(8*a + 5*b)*Coth[x/2])/(a + b)^2 + (8*Csch[x]^3*Sinh[x/2]^4)/(a - b) 
 - (Csch[x/2]^4*Sinh[x])/(2*(a + b)) + (2*(-8*a + 5*b)*Tanh[x/2])/(a - b)^ 
2)/24
 
3.2.86.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.89 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.15, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.462, Rules used = {3042, 3206, 25, 3042, 25, 3086, 2009, 3087, 15, 3206, 25, 3042, 25, 3086, 24, 3138, 221, 4254, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\coth ^4(x)}{a+b \cosh (x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan \left (-\frac {\pi }{2}+i x\right )^4}{a-b \sin \left (-\frac {\pi }{2}+i x\right )}dx\)

\(\Big \downarrow \) 3206

\(\displaystyle -\frac {a^2 \int -\frac {\coth ^2(x)}{a+b \cosh (x)}dx}{a^2-b^2}+\frac {b \int -\coth ^3(x) \text {csch}(x)dx}{a^2-b^2}+\frac {a \int \coth ^2(x) \text {csch}^2(x)dx}{a^2-b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {a^2 \int \frac {\coth ^2(x)}{a+b \cosh (x)}dx}{a^2-b^2}-\frac {b \int \coth ^3(x) \text {csch}(x)dx}{a^2-b^2}+\frac {a \int \coth ^2(x) \text {csch}^2(x)dx}{a^2-b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^2 \int -\frac {\tan \left (i x-\frac {\pi }{2}\right )^2}{a-b \sin \left (i x-\frac {\pi }{2}\right )}dx}{a^2-b^2}+\frac {a \int \sec \left (i x-\frac {\pi }{2}\right )^2 \tan \left (i x-\frac {\pi }{2}\right )^2dx}{a^2-b^2}-\frac {b \int -\sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )^3dx}{a^2-b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {a^2 \int \frac {\tan \left (i x-\frac {\pi }{2}\right )^2}{a-b \sin \left (i x-\frac {\pi }{2}\right )}dx}{a^2-b^2}+\frac {a \int \sec \left (i x-\frac {\pi }{2}\right )^2 \tan \left (i x-\frac {\pi }{2}\right )^2dx}{a^2-b^2}+\frac {b \int \sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )^3dx}{a^2-b^2}\)

\(\Big \downarrow \) 3086

\(\displaystyle -\frac {i b \int \left (-\text {csch}^2(x)-1\right )d(-i \text {csch}(x))}{a^2-b^2}-\frac {a^2 \int \frac {\tan \left (i x-\frac {\pi }{2}\right )^2}{a-b \sin \left (i x-\frac {\pi }{2}\right )}dx}{a^2-b^2}+\frac {a \int \sec \left (i x-\frac {\pi }{2}\right )^2 \tan \left (i x-\frac {\pi }{2}\right )^2dx}{a^2-b^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a^2 \int \frac {\tan \left (i x-\frac {\pi }{2}\right )^2}{a-b \sin \left (i x-\frac {\pi }{2}\right )}dx}{a^2-b^2}+\frac {a \int \sec \left (i x-\frac {\pi }{2}\right )^2 \tan \left (i x-\frac {\pi }{2}\right )^2dx}{a^2-b^2}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 3087

\(\displaystyle -\frac {i a \int -\coth ^2(x)d(i \coth (x))}{a^2-b^2}-\frac {a^2 \int \frac {\tan \left (i x-\frac {\pi }{2}\right )^2}{a-b \sin \left (i x-\frac {\pi }{2}\right )}dx}{a^2-b^2}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 15

\(\displaystyle -\frac {a^2 \int \frac {\tan \left (i x-\frac {\pi }{2}\right )^2}{a-b \sin \left (i x-\frac {\pi }{2}\right )}dx}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 3206

\(\displaystyle -\frac {a^2 \left (-\frac {a^2 \int \frac {1}{a+b \cosh (x)}dx}{a^2-b^2}+\frac {a \int -\text {csch}^2(x)dx}{a^2-b^2}+\frac {b \int \coth (x) \text {csch}(x)dx}{a^2-b^2}\right )}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {a^2 \left (-\frac {a^2 \int \frac {1}{a+b \cosh (x)}dx}{a^2-b^2}-\frac {a \int \text {csch}^2(x)dx}{a^2-b^2}+\frac {b \int \coth (x) \text {csch}(x)dx}{a^2-b^2}\right )}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 \left (-\frac {a^2 \int \frac {1}{a+b \sin \left (i x+\frac {\pi }{2}\right )}dx}{a^2-b^2}-\frac {a \int -\csc (i x)^2dx}{a^2-b^2}+\frac {b \int \sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )dx}{a^2-b^2}\right )}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {a^2 \left (-\frac {a^2 \int \frac {1}{a+b \sin \left (i x+\frac {\pi }{2}\right )}dx}{a^2-b^2}+\frac {a \int \csc (i x)^2dx}{a^2-b^2}+\frac {b \int \sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )dx}{a^2-b^2}\right )}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 3086

\(\displaystyle -\frac {a^2 \left (-\frac {a^2 \int \frac {1}{a+b \sin \left (i x+\frac {\pi }{2}\right )}dx}{a^2-b^2}+\frac {a \int \csc (i x)^2dx}{a^2-b^2}-\frac {i b \int 1d(-i \text {csch}(x))}{a^2-b^2}\right )}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {a^2 \left (-\frac {a^2 \int \frac {1}{a+b \sin \left (i x+\frac {\pi }{2}\right )}dx}{a^2-b^2}+\frac {a \int \csc (i x)^2dx}{a^2-b^2}-\frac {b \text {csch}(x)}{a^2-b^2}\right )}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 3138

\(\displaystyle -\frac {a^2 \left (\frac {a \int \csc (i x)^2dx}{a^2-b^2}-\frac {2 a^2 \int \frac {1}{-\left ((a-b) \tanh ^2\left (\frac {x}{2}\right )\right )+a+b}d\tanh \left (\frac {x}{2}\right )}{a^2-b^2}-\frac {b \text {csch}(x)}{a^2-b^2}\right )}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a^2 \left (\frac {a \int \csc (i x)^2dx}{a^2-b^2}-\frac {2 a^2 \text {arctanh}\left (\frac {\sqrt {a-b} \tanh \left (\frac {x}{2}\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} \sqrt {a+b} \left (a^2-b^2\right )}-\frac {b \text {csch}(x)}{a^2-b^2}\right )}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 4254

\(\displaystyle -\frac {a^2 \left (\frac {i a \int 1d(-i \coth (x))}{a^2-b^2}-\frac {2 a^2 \text {arctanh}\left (\frac {\sqrt {a-b} \tanh \left (\frac {x}{2}\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} \sqrt {a+b} \left (a^2-b^2\right )}-\frac {b \text {csch}(x)}{a^2-b^2}\right )}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {a^2 \left (-\frac {2 a^2 \text {arctanh}\left (\frac {\sqrt {a-b} \tanh \left (\frac {x}{2}\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} \sqrt {a+b} \left (a^2-b^2\right )}+\frac {a \coth (x)}{a^2-b^2}-\frac {b \text {csch}(x)}{a^2-b^2}\right )}{a^2-b^2}-\frac {a \coth ^3(x)}{3 \left (a^2-b^2\right )}-\frac {i b \left (\frac {1}{3} i \text {csch}^3(x)+i \text {csch}(x)\right )}{a^2-b^2}\)

input
Int[Coth[x]^4/(a + b*Cosh[x]),x]
 
output
-1/3*(a*Coth[x]^3)/(a^2 - b^2) - (a^2*((-2*a^2*ArcTanh[(Sqrt[a - b]*Tanh[x 
/2])/Sqrt[a + b]])/(Sqrt[a - b]*Sqrt[a + b]*(a^2 - b^2)) + (a*Coth[x])/(a^ 
2 - b^2) - (b*Csch[x])/(a^2 - b^2)))/(a^2 - b^2) - (I*b*(I*Csch[x] + (I/3) 
*Csch[x]^3))/(a^2 - b^2)
 

3.2.86.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3086
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_.), x_Symbol] :> Simp[a/f   Subst[Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2 
), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2 
] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])
 

rule 3087
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_S 
ymbol] :> Simp[1/f   Subst[Int[(b*x)^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + 
f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n - 1) 
/2] && LtQ[0, n, m - 1])
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3206
Int[((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[a/(a^2 - b^2)   Int[(g*Tan[e + f*x])^p/Sin[e + f*x] 
^2, x], x] + (-Simp[b*(g/(a^2 - b^2))   Int[(g*Tan[e + f*x])^(p - 1)/Cos[e 
+ f*x], x], x] - Simp[a^2*(g^2/(a^2 - b^2))   Int[(g*Tan[e + f*x])^(p - 2)/ 
(a + b*Sin[e + f*x]), x], x]) /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2 
, 0] && IntegersQ[2*p] && GtQ[p, 1]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 
3.2.86.4 Maple [A] (verified)

Time = 1.03 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.93

method result size
default \(-\frac {\frac {a \tanh \left (\frac {x}{2}\right )^{3}}{3}-\frac {b \tanh \left (\frac {x}{2}\right )^{3}}{3}+5 a \tanh \left (\frac {x}{2}\right )-3 b \tanh \left (\frac {x}{2}\right )}{8 \left (a -b \right )^{2}}-\frac {1}{24 \left (a +b \right ) \tanh \left (\frac {x}{2}\right )^{3}}-\frac {5 a +3 b}{8 \left (a +b \right )^{2} \tanh \left (\frac {x}{2}\right )}+\frac {2 a^{4} \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tanh \left (\frac {x}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\left (a -b \right )^{2} \left (a +b \right )^{2} \sqrt {\left (a +b \right ) \left (a -b \right )}}\) \(127\)
risch \(-\frac {2 \left (-6 a^{2} b \,{\mathrm e}^{5 x}+3 b^{3} {\mathrm e}^{5 x}+6 a^{3} {\mathrm e}^{4 x}-3 a \,b^{2} {\mathrm e}^{4 x}+8 a^{2} b \,{\mathrm e}^{3 x}-2 b^{3} {\mathrm e}^{3 x}-6 a^{3} {\mathrm e}^{2 x}-6 a^{2} b \,{\mathrm e}^{x}+3 b^{3} {\mathrm e}^{x}+4 a^{3}-a \,b^{2}\right )}{3 \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \left ({\mathrm e}^{2 x}-1\right )^{3}}+\frac {a^{4} \ln \left ({\mathrm e}^{x}+\frac {a \sqrt {a^{2}-b^{2}}-a^{2}+b^{2}}{b \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2}}-\frac {a^{4} \ln \left ({\mathrm e}^{x}+\frac {a \sqrt {a^{2}-b^{2}}+a^{2}-b^{2}}{b \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2}}\) \(259\)

input
int(coth(x)^4/(a+b*cosh(x)),x,method=_RETURNVERBOSE)
 
output
-1/8/(a-b)^2*(1/3*a*tanh(1/2*x)^3-1/3*b*tanh(1/2*x)^3+5*a*tanh(1/2*x)-3*b* 
tanh(1/2*x))-1/24/(a+b)/tanh(1/2*x)^3-1/8*(5*a+3*b)/(a+b)^2/tanh(1/2*x)+2/ 
(a-b)^2/(a+b)^2*a^4/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tanh(1/2*x)/((a+b)*( 
a-b))^(1/2))
 
3.2.86.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1174 vs. \(2 (123) = 246\).

Time = 0.27 (sec) , antiderivative size = 2417, normalized size of antiderivative = 17.64 \[ \int \frac {\coth ^4(x)}{a+b \cosh (x)} \, dx=\text {Too large to display} \]

input
integrate(coth(x)^4/(a+b*cosh(x)),x, algorithm="fricas")
 
output
[1/3*(6*(2*a^4*b - 3*a^2*b^3 + b^5)*cosh(x)^5 + 6*(2*a^4*b - 3*a^2*b^3 + b 
^5)*sinh(x)^5 - 8*a^5 + 10*a^3*b^2 - 2*a*b^4 - 6*(2*a^5 - 3*a^3*b^2 + a*b^ 
4)*cosh(x)^4 - 6*(2*a^5 - 3*a^3*b^2 + a*b^4 - 5*(2*a^4*b - 3*a^2*b^3 + b^5 
)*cosh(x))*sinh(x)^4 - 4*(4*a^4*b - 5*a^2*b^3 + b^5)*cosh(x)^3 - 4*(4*a^4* 
b - 5*a^2*b^3 + b^5 - 15*(2*a^4*b - 3*a^2*b^3 + b^5)*cosh(x)^2 + 6*(2*a^5 
- 3*a^3*b^2 + a*b^4)*cosh(x))*sinh(x)^3 + 12*(a^5 - a^3*b^2)*cosh(x)^2 + 1 
2*(a^5 - a^3*b^2 + 5*(2*a^4*b - 3*a^2*b^3 + b^5)*cosh(x)^3 - 3*(2*a^5 - 3* 
a^3*b^2 + a*b^4)*cosh(x)^2 - (4*a^4*b - 5*a^2*b^3 + b^5)*cosh(x))*sinh(x)^ 
2 + 3*(a^4*cosh(x)^6 + 6*a^4*cosh(x)*sinh(x)^5 + a^4*sinh(x)^6 - 3*a^4*cos 
h(x)^4 + 3*a^4*cosh(x)^2 + 3*(5*a^4*cosh(x)^2 - a^4)*sinh(x)^4 - a^4 + 4*( 
5*a^4*cosh(x)^3 - 3*a^4*cosh(x))*sinh(x)^3 + 3*(5*a^4*cosh(x)^4 - 6*a^4*co 
sh(x)^2 + a^4)*sinh(x)^2 + 6*(a^4*cosh(x)^5 - 2*a^4*cosh(x)^3 + a^4*cosh(x 
))*sinh(x))*sqrt(a^2 - b^2)*log((b^2*cosh(x)^2 + b^2*sinh(x)^2 + 2*a*b*cos 
h(x) + 2*a^2 - b^2 + 2*(b^2*cosh(x) + a*b)*sinh(x) - 2*sqrt(a^2 - b^2)*(b* 
cosh(x) + b*sinh(x) + a))/(b*cosh(x)^2 + b*sinh(x)^2 + 2*a*cosh(x) + 2*(b* 
cosh(x) + a)*sinh(x) + b)) + 6*(2*a^4*b - 3*a^2*b^3 + b^5)*cosh(x) + 6*(2* 
a^4*b - 3*a^2*b^3 + b^5 + 5*(2*a^4*b - 3*a^2*b^3 + b^5)*cosh(x)^4 - 4*(2*a 
^5 - 3*a^3*b^2 + a*b^4)*cosh(x)^3 - 2*(4*a^4*b - 5*a^2*b^3 + b^5)*cosh(x)^ 
2 + 4*(a^5 - a^3*b^2)*cosh(x))*sinh(x))/((a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^ 
6)*cosh(x)^6 + 6*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*cosh(x)*sinh(x)^5 ...
 
3.2.86.6 Sympy [F]

\[ \int \frac {\coth ^4(x)}{a+b \cosh (x)} \, dx=\int \frac {\coth ^{4}{\left (x \right )}}{a + b \cosh {\left (x \right )}}\, dx \]

input
integrate(coth(x)**4/(a+b*cosh(x)),x)
 
output
Integral(coth(x)**4/(a + b*cosh(x)), x)
 
3.2.86.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\coth ^4(x)}{a+b \cosh (x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate(coth(x)^4/(a+b*cosh(x)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?` f 
or more de
 
3.2.86.8 Giac [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.26 \[ \int \frac {\coth ^4(x)}{a+b \cosh (x)} \, dx=\frac {2 \, a^{4} \arctan \left (\frac {b e^{x} + a}{\sqrt {-a^{2} + b^{2}}}\right )}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {-a^{2} + b^{2}}} + \frac {2 \, {\left (6 \, a^{2} b e^{\left (5 \, x\right )} - 3 \, b^{3} e^{\left (5 \, x\right )} - 6 \, a^{3} e^{\left (4 \, x\right )} + 3 \, a b^{2} e^{\left (4 \, x\right )} - 8 \, a^{2} b e^{\left (3 \, x\right )} + 2 \, b^{3} e^{\left (3 \, x\right )} + 6 \, a^{3} e^{\left (2 \, x\right )} + 6 \, a^{2} b e^{x} - 3 \, b^{3} e^{x} - 4 \, a^{3} + a b^{2}\right )}}{3 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} {\left (e^{\left (2 \, x\right )} - 1\right )}^{3}} \]

input
integrate(coth(x)^4/(a+b*cosh(x)),x, algorithm="giac")
 
output
2*a^4*arctan((b*e^x + a)/sqrt(-a^2 + b^2))/((a^4 - 2*a^2*b^2 + b^4)*sqrt(- 
a^2 + b^2)) + 2/3*(6*a^2*b*e^(5*x) - 3*b^3*e^(5*x) - 6*a^3*e^(4*x) + 3*a*b 
^2*e^(4*x) - 8*a^2*b*e^(3*x) + 2*b^3*e^(3*x) + 6*a^3*e^(2*x) + 6*a^2*b*e^x 
 - 3*b^3*e^x - 4*a^3 + a*b^2)/((a^4 - 2*a^2*b^2 + b^4)*(e^(2*x) - 1)^3)
 
3.2.86.9 Mupad [B] (verification not implemented)

Time = 2.55 (sec) , antiderivative size = 666, normalized size of antiderivative = 4.86 \[ \int \frac {\coth ^4(x)}{a+b \cosh (x)} \, dx=\frac {\frac {4\,\left (a\,b^2-a^3\right )}{{\left (a^2-b^2\right )}^2}+\frac {8\,{\mathrm {e}}^x\,\left (a^2\,b-b^3\right )}{3\,{\left (a^2-b^2\right )}^2}}{{\mathrm {e}}^{4\,x}-2\,{\mathrm {e}}^{2\,x}+1}-\frac {\frac {8\,a}{3\,\left (a^2-b^2\right )}-\frac {8\,b\,{\mathrm {e}}^x}{3\,\left (a^2-b^2\right )}}{3\,{\mathrm {e}}^{2\,x}-3\,{\mathrm {e}}^{4\,x}+{\mathrm {e}}^{6\,x}-1}-\frac {\frac {2\,a\,\left (2\,a^2-b^2\right )}{{\left (a^2-b^2\right )}^2}-\frac {2\,b\,{\mathrm {e}}^x\,\left (2\,a^2-b^2\right )}{{\left (a^2-b^2\right )}^2}}{{\mathrm {e}}^{2\,x}-1}+\frac {2\,\mathrm {atan}\left (\left ({\mathrm {e}}^x\,\left (\frac {2\,a^4}{b^2\,{\left (a^2-b^2\right )}^2\,\sqrt {a^8}\,\left (a^4-2\,a^2\,b^2+b^4\right )}+\frac {2\,\left (a^5\,\sqrt {a^8}-2\,a^3\,b^2\,\sqrt {a^8}+a\,b^4\,\sqrt {a^8}\right )}{a^3\,b^2\,\sqrt {-{\left (a^2-b^2\right )}^5}\,\left (a^4-2\,a^2\,b^2+b^4\right )\,\sqrt {-a^{10}+5\,a^8\,b^2-10\,a^6\,b^4+10\,a^4\,b^6-5\,a^2\,b^8+b^{10}}}\right )+\frac {2\,\left (b^5\,\sqrt {a^8}-2\,a^2\,b^3\,\sqrt {a^8}+a^4\,b\,\sqrt {a^8}\right )}{a^3\,b^2\,\sqrt {-{\left (a^2-b^2\right )}^5}\,\left (a^4-2\,a^2\,b^2+b^4\right )\,\sqrt {-a^{10}+5\,a^8\,b^2-10\,a^6\,b^4+10\,a^4\,b^6-5\,a^2\,b^8+b^{10}}}\right )\,\left (\frac {b^5\,\sqrt {-a^{10}+5\,a^8\,b^2-10\,a^6\,b^4+10\,a^4\,b^6-5\,a^2\,b^8+b^{10}}}{2}-a^2\,b^3\,\sqrt {-a^{10}+5\,a^8\,b^2-10\,a^6\,b^4+10\,a^4\,b^6-5\,a^2\,b^8+b^{10}}+\frac {a^4\,b\,\sqrt {-a^{10}+5\,a^8\,b^2-10\,a^6\,b^4+10\,a^4\,b^6-5\,a^2\,b^8+b^{10}}}{2}\right )\right )\,\sqrt {a^8}}{\sqrt {-a^{10}+5\,a^8\,b^2-10\,a^6\,b^4+10\,a^4\,b^6-5\,a^2\,b^8+b^{10}}} \]

input
int(coth(x)^4/(a + b*cosh(x)),x)
 
output
((4*(a*b^2 - a^3))/(a^2 - b^2)^2 + (8*exp(x)*(a^2*b - b^3))/(3*(a^2 - b^2) 
^2))/(exp(4*x) - 2*exp(2*x) + 1) - ((8*a)/(3*(a^2 - b^2)) - (8*b*exp(x))/( 
3*(a^2 - b^2)))/(3*exp(2*x) - 3*exp(4*x) + exp(6*x) - 1) - ((2*a*(2*a^2 - 
b^2))/(a^2 - b^2)^2 - (2*b*exp(x)*(2*a^2 - b^2))/(a^2 - b^2)^2)/(exp(2*x) 
- 1) + (2*atan((exp(x)*((2*a^4)/(b^2*(a^2 - b^2)^2*(a^8)^(1/2)*(a^4 + b^4 
- 2*a^2*b^2)) + (2*(a^5*(a^8)^(1/2) - 2*a^3*b^2*(a^8)^(1/2) + a*b^4*(a^8)^ 
(1/2)))/(a^3*b^2*(-(a^2 - b^2)^5)^(1/2)*(a^4 + b^4 - 2*a^2*b^2)*(b^10 - a^ 
10 - 5*a^2*b^8 + 10*a^4*b^6 - 10*a^6*b^4 + 5*a^8*b^2)^(1/2))) + (2*(b^5*(a 
^8)^(1/2) - 2*a^2*b^3*(a^8)^(1/2) + a^4*b*(a^8)^(1/2)))/(a^3*b^2*(-(a^2 - 
b^2)^5)^(1/2)*(a^4 + b^4 - 2*a^2*b^2)*(b^10 - a^10 - 5*a^2*b^8 + 10*a^4*b^ 
6 - 10*a^6*b^4 + 5*a^8*b^2)^(1/2)))*((b^5*(b^10 - a^10 - 5*a^2*b^8 + 10*a^ 
4*b^6 - 10*a^6*b^4 + 5*a^8*b^2)^(1/2))/2 - a^2*b^3*(b^10 - a^10 - 5*a^2*b^ 
8 + 10*a^4*b^6 - 10*a^6*b^4 + 5*a^8*b^2)^(1/2) + (a^4*b*(b^10 - a^10 - 5*a 
^2*b^8 + 10*a^4*b^6 - 10*a^6*b^4 + 5*a^8*b^2)^(1/2))/2))*(a^8)^(1/2))/(b^1 
0 - a^10 - 5*a^2*b^8 + 10*a^4*b^6 - 10*a^6*b^4 + 5*a^8*b^2)^(1/2)