3.2.91 \(\int \frac {\coth ^3(a+b \log (c x^n))}{x} \, dx\) [191]

3.2.91.1 Optimal result
3.2.91.2 Mathematica [A] (verified)
3.2.91.3 Rubi [C] (verified)
3.2.91.4 Maple [A] (verified)
3.2.91.5 Fricas [B] (verification not implemented)
3.2.91.6 Sympy [F(-2)]
3.2.91.7 Maxima [B] (verification not implemented)
3.2.91.8 Giac [B] (verification not implemented)
3.2.91.9 Mupad [B] (verification not implemented)

3.2.91.1 Optimal result

Integrand size = 17, antiderivative size = 43 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {\coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b n}+\frac {\log \left (\sinh \left (a+b \log \left (c x^n\right )\right )\right )}{b n} \]

output
-1/2*coth(a+b*ln(c*x^n))^2/b/n+ln(sinh(a+b*ln(c*x^n)))/b/n
 
3.2.91.2 Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 52, normalized size of antiderivative = 1.21 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {\coth ^2\left (a+b \log \left (c x^n\right )\right )-2 \log \left (\cosh \left (a+b \log \left (c x^n\right )\right )\right )-2 \log \left (\tanh \left (a+b \log \left (c x^n\right )\right )\right )}{2 b n} \]

input
Integrate[Coth[a + b*Log[c*x^n]]^3/x,x]
 
output
-1/2*(Coth[a + b*Log[c*x^n]]^2 - 2*Log[Cosh[a + b*Log[c*x^n]]] - 2*Log[Tan 
h[a + b*Log[c*x^n]]])/(b*n)
 
3.2.91.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.23, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.471, Rules used = {3039, 3042, 26, 3954, 26, 3042, 26, 3956}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \coth ^3\left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int i \tan \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )^3d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \int \tan \left (\frac {1}{2} (2 i a+\pi )+i b \log \left (c x^n\right )\right )^3d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3954

\(\displaystyle \frac {i \left (\frac {i \coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b}-\int i \coth \left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )\right )}{n}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \left (\frac {i \coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b}-i \int \coth \left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {i \left (\frac {i \coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b}-i \int -i \tan \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )d\log \left (c x^n\right )\right )}{n}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \left (\frac {i \coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b}-\int \tan \left (\frac {1}{2} (2 i a+\pi )+i b \log \left (c x^n\right )\right )d\log \left (c x^n\right )\right )}{n}\)

\(\Big \downarrow \) 3956

\(\displaystyle \frac {i \left (\frac {i \coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b}-\frac {i \log \left (-i \sinh \left (a+b \log \left (c x^n\right )\right )\right )}{b}\right )}{n}\)

input
Int[Coth[a + b*Log[c*x^n]]^3/x,x]
 
output
(I*(((I/2)*Coth[a + b*Log[c*x^n]]^2)/b - (I*Log[(-I)*Sinh[a + b*Log[c*x^n] 
]])/b))/n
 

3.2.91.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3954
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d 
*x])^(n - 1)/(d*(n - 1))), x] - Simp[b^2   Int[(b*Tan[c + d*x])^(n - 2), x] 
, x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]
 

rule 3956
Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d 
*x], x]]/d, x] /; FreeQ[{c, d}, x]
 
3.2.91.4 Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.30

method result size
derivativedivides \(\frac {-\frac {{\coth \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{2}-\frac {\ln \left (\coth \left (a +b \ln \left (c \,x^{n}\right )\right )-1\right )}{2}-\frac {\ln \left (\coth \left (a +b \ln \left (c \,x^{n}\right )\right )+1\right )}{2}}{n b}\) \(56\)
default \(\frac {-\frac {{\coth \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{2}-\frac {\ln \left (\coth \left (a +b \ln \left (c \,x^{n}\right )\right )-1\right )}{2}-\frac {\ln \left (\coth \left (a +b \ln \left (c \,x^{n}\right )\right )+1\right )}{2}}{n b}\) \(56\)
parallelrisch \(\frac {-2 \ln \left (x \right ) b n +2 \ln \left (\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )\right )-2 \ln \left (1-\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )\right )-{\coth \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{2 b n}\) \(63\)
risch \(\ln \left (x \right )-\frac {2 a}{b n}-\frac {2 \ln \left (c \right )}{n}-\frac {2 \ln \left (x^{n}\right )}{n}-\frac {i \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{n}+\frac {i \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )}{n}+\frac {i \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{n}-\frac {i \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}{n}-\frac {2 \left (x^{n}\right )^{2 b} c^{2 b} {\mathrm e}^{2 a} {\mathrm e}^{i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}}{b n {\left (\left (x^{n}\right )^{2 b} c^{2 b} {\mathrm e}^{2 a} {\mathrm e}^{i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}-1\right )}^{2}}+\frac {\ln \left (\left (x^{n}\right )^{2 b} c^{2 b} {\mathrm e}^{2 a} {\mathrm e}^{i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}-1\right )}{b n}\) \(449\)

input
int(coth(a+b*ln(c*x^n))^3/x,x,method=_RETURNVERBOSE)
 
output
1/n/b*(-1/2*coth(a+b*ln(c*x^n))^2-1/2*ln(coth(a+b*ln(c*x^n))-1)-1/2*ln(cot 
h(a+b*ln(c*x^n))+1))
 
3.2.91.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 572 vs. \(2 (41) = 82\).

Time = 0.30 (sec) , antiderivative size = 572, normalized size of antiderivative = 13.30 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{4} \log \left (x\right ) + 4 \, b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \log \left (x\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{3} + b n \log \left (x\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{4} - 2 \, {\left (b n \log \left (x\right ) - 1\right )} \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + b n \log \left (x\right ) + 2 \, {\left (3 \, b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} \log \left (x\right ) - b n \log \left (x\right ) + 1\right )} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - {\left (\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{4} + 4 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{3} + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{4} + 2 \, {\left (3 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - 1\right )} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 4 \, {\left (\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{3} - \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + 1\right )} \log \left (\frac {2 \, \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}\right ) + 4 \, {\left (b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{3} \log \left (x\right ) - {\left (b n \log \left (x\right ) - 1\right )} \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{4} + 4 \, b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{3} + b n \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{4} - 2 \, b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, {\left (3 \, b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - b n\right )} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + b n + 4 \, {\left (b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{3} - b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )} \]

input
integrate(coth(a+b*log(c*x^n))^3/x,x, algorithm="fricas")
 
output
-(b*n*cosh(b*n*log(x) + b*log(c) + a)^4*log(x) + 4*b*n*cosh(b*n*log(x) + b 
*log(c) + a)*log(x)*sinh(b*n*log(x) + b*log(c) + a)^3 + b*n*log(x)*sinh(b* 
n*log(x) + b*log(c) + a)^4 - 2*(b*n*log(x) - 1)*cosh(b*n*log(x) + b*log(c) 
 + a)^2 + b*n*log(x) + 2*(3*b*n*cosh(b*n*log(x) + b*log(c) + a)^2*log(x) - 
 b*n*log(x) + 1)*sinh(b*n*log(x) + b*log(c) + a)^2 - (cosh(b*n*log(x) + b* 
log(c) + a)^4 + 4*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log( 
c) + a)^3 + sinh(b*n*log(x) + b*log(c) + a)^4 + 2*(3*cosh(b*n*log(x) + b*l 
og(c) + a)^2 - 1)*sinh(b*n*log(x) + b*log(c) + a)^2 - 2*cosh(b*n*log(x) + 
b*log(c) + a)^2 + 4*(cosh(b*n*log(x) + b*log(c) + a)^3 - cosh(b*n*log(x) + 
 b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a) + 1)*log(2*sinh(b*n*log(x) 
 + b*log(c) + a)/(cosh(b*n*log(x) + b*log(c) + a) - sinh(b*n*log(x) + b*lo 
g(c) + a))) + 4*(b*n*cosh(b*n*log(x) + b*log(c) + a)^3*log(x) - (b*n*log(x 
) - 1)*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a))/( 
b*n*cosh(b*n*log(x) + b*log(c) + a)^4 + 4*b*n*cosh(b*n*log(x) + b*log(c) + 
 a)*sinh(b*n*log(x) + b*log(c) + a)^3 + b*n*sinh(b*n*log(x) + b*log(c) + a 
)^4 - 2*b*n*cosh(b*n*log(x) + b*log(c) + a)^2 + 2*(3*b*n*cosh(b*n*log(x) + 
 b*log(c) + a)^2 - b*n)*sinh(b*n*log(x) + b*log(c) + a)^2 + b*n + 4*(b*n*c 
osh(b*n*log(x) + b*log(c) + a)^3 - b*n*cosh(b*n*log(x) + b*log(c) + a))*si 
nh(b*n*log(x) + b*log(c) + a))
 
3.2.91.6 Sympy [F(-2)]

Exception generated. \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\text {Exception raised: TypeError} \]

input
integrate(coth(a+b*ln(c*x**n))**3/x,x)
 
output
Exception raised: TypeError >> Invalid NaN comparison
 
3.2.91.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 330 vs. \(2 (41) = 82\).

Time = 0.27 (sec) , antiderivative size = 330, normalized size of antiderivative = 7.67 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {4 \, c^{2 \, b} e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} - 3}{4 \, {\left (b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} - 2 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} - \frac {3 \, {\left (2 \, c^{2 \, b} e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} - 1\right )}}{4 \, {\left (b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} - 2 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} + \frac {2 \, c^{2 \, b} e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} - 3}{4 \, {\left (b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} - 2 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} - \frac {3}{4 \, {\left (b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} - 2 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} + \frac {\log \left (\frac {{\left (c^{b} e^{\left (b \log \left (x^{n}\right ) + a\right )} + 1\right )} e^{\left (-a\right )}}{c^{b}}\right )}{b n} + \frac {\log \left (\frac {{\left (c^{b} e^{\left (b \log \left (x^{n}\right ) + a\right )} - 1\right )} e^{\left (-a\right )}}{c^{b}}\right )}{b n} - \log \left (x\right ) \]

input
integrate(coth(a+b*log(c*x^n))^3/x,x, algorithm="maxima")
 
output
-1/4*(4*c^(2*b)*e^(2*b*log(x^n) + 2*a) - 3)/(b*c^(4*b)*n*e^(4*b*log(x^n) + 
 4*a) - 2*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b*n) - 3/4*(2*c^(2*b)*e^(2* 
b*log(x^n) + 2*a) - 1)/(b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) - 2*b*c^(2*b)*n 
*e^(2*b*log(x^n) + 2*a) + b*n) + 1/4*(2*c^(2*b)*e^(2*b*log(x^n) + 2*a) - 3 
)/(b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) - 2*b*c^(2*b)*n*e^(2*b*log(x^n) + 2* 
a) + b*n) - 3/4/(b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) - 2*b*c^(2*b)*n*e^(2*b 
*log(x^n) + 2*a) + b*n) + log((c^b*e^(b*log(x^n) + a) + 1)*e^(-a)/c^b)/(b* 
n) + log((c^b*e^(b*log(x^n) + a) - 1)*e^(-a)/c^b)/(b*n) - log(x)
 
3.2.91.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 127 vs. \(2 (41) = 82\).

Time = 0.38 (sec) , antiderivative size = 127, normalized size of antiderivative = 2.95 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {\log \left (\sqrt {-2 \, x^{2 \, b n} {\left | c \right |}^{2 \, b} \cos \left (\pi b \mathrm {sgn}\left (c\right ) - \pi b\right ) e^{\left (2 \, a\right )} + x^{4 \, b n} {\left | c \right |}^{4 \, b} e^{\left (4 \, a\right )} + 1}\right )}{b n} - \frac {3 \, c^{4 \, b} x^{4 \, b n} e^{\left (4 \, a\right )} - 2 \, c^{2 \, b} x^{2 \, b n} e^{\left (2 \, a\right )} + 3}{2 \, {\left (c^{2 \, b} x^{2 \, b n} e^{\left (2 \, a\right )} - 1\right )}^{2} b n} - \log \left (x\right ) \]

input
integrate(coth(a+b*log(c*x^n))^3/x,x, algorithm="giac")
 
output
log(sqrt(-2*x^(2*b*n)*abs(c)^(2*b)*cos(pi*b*sgn(c) - pi*b)*e^(2*a) + x^(4* 
b*n)*abs(c)^(4*b)*e^(4*a) + 1))/(b*n) - 1/2*(3*c^(4*b)*x^(4*b*n)*e^(4*a) - 
 2*c^(2*b)*x^(2*b*n)*e^(2*a) + 3)/((c^(2*b)*x^(2*b*n)*e^(2*a) - 1)^2*b*n) 
- log(x)
 
3.2.91.9 Mupad [B] (verification not implemented)

Time = 1.89 (sec) , antiderivative size = 95, normalized size of antiderivative = 2.21 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2}{b\,n-b\,n\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}}-\ln \left (x\right )-\frac {2}{b\,n-2\,b\,n\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}+b\,n\,{\mathrm {e}}^{4\,a}\,{\left (c\,x^n\right )}^{4\,b}}+\frac {\ln \left ({\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}-1\right )}{b\,n} \]

input
int(coth(a + b*log(c*x^n))^3/x,x)
 
output
2/(b*n - b*n*exp(2*a)*(c*x^n)^(2*b)) - log(x) - 2/(b*n - 2*b*n*exp(2*a)*(c 
*x^n)^(2*b) + b*n*exp(4*a)*(c*x^n)^(4*b)) + log(exp(2*a)*(c*x^n)^(2*b) - 1 
)/(b*n)