3.1.7 \(\int \frac {1}{(b \coth (c+d x))^{5/2}} \, dx\) [7]

3.1.7.1 Optimal result
3.1.7.2 Mathematica [A] (verified)
3.1.7.3 Rubi [A] (warning: unable to verify)
3.1.7.4 Maple [A] (verified)
3.1.7.5 Fricas [B] (verification not implemented)
3.1.7.6 Sympy [F]
3.1.7.7 Maxima [F]
3.1.7.8 Giac [F(-2)]
3.1.7.9 Mupad [B] (verification not implemented)

3.1.7.1 Optimal result

Integrand size = 12, antiderivative size = 79 \[ \int \frac {1}{(b \coth (c+d x))^{5/2}} \, dx=\frac {\arctan \left (\frac {\sqrt {b \coth (c+d x)}}{\sqrt {b}}\right )}{b^{5/2} d}+\frac {\text {arctanh}\left (\frac {\sqrt {b \coth (c+d x)}}{\sqrt {b}}\right )}{b^{5/2} d}-\frac {2}{3 b d (b \coth (c+d x))^{3/2}} \]

output
arctan((b*coth(d*x+c))^(1/2)/b^(1/2))/b^(5/2)/d+arctanh((b*coth(d*x+c))^(1 
/2)/b^(1/2))/b^(5/2)/d-2/3/b/d/(b*coth(d*x+c))^(3/2)
 
3.1.7.2 Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.99 \[ \int \frac {1}{(b \coth (c+d x))^{5/2}} \, dx=\frac {-2+3 \arctan \left (\sqrt [4]{\coth ^2(c+d x)}\right ) \coth ^2(c+d x)^{3/4}+3 \text {arctanh}\left (\sqrt [4]{\coth ^2(c+d x)}\right ) \coth ^2(c+d x)^{3/4}}{3 b d (b \coth (c+d x))^{3/2}} \]

input
Integrate[(b*Coth[c + d*x])^(-5/2),x]
 
output
(-2 + 3*ArcTan[(Coth[c + d*x]^2)^(1/4)]*(Coth[c + d*x]^2)^(3/4) + 3*ArcTan 
h[(Coth[c + d*x]^2)^(1/4)]*(Coth[c + d*x]^2)^(3/4))/(3*b*d*(b*Coth[c + d*x 
])^(3/2))
 
3.1.7.3 Rubi [A] (warning: unable to verify)

Time = 0.31 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.96, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.750, Rules used = {3042, 3955, 3042, 3957, 25, 266, 756, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(b \coth (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (-i b \tan \left (i c+i d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3955

\(\displaystyle \frac {\int \frac {1}{\sqrt {b \coth (c+d x)}}dx}{b^2}-\frac {2}{3 b d (b \coth (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2}{3 b d (b \coth (c+d x))^{3/2}}+\frac {\int \frac {1}{\sqrt {-i b \tan \left (i c+i d x+\frac {\pi }{2}\right )}}dx}{b^2}\)

\(\Big \downarrow \) 3957

\(\displaystyle -\frac {\int -\frac {1}{\sqrt {b \coth (c+d x)} \left (b^2-b^2 \coth ^2(c+d x)\right )}d(b \coth (c+d x))}{b d}-\frac {2}{3 b d (b \coth (c+d x))^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {1}{\sqrt {b \coth (c+d x)} \left (b^2-b^2 \coth ^2(c+d x)\right )}d(b \coth (c+d x))}{b d}-\frac {2}{3 b d (b \coth (c+d x))^{3/2}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 \int \frac {1}{b^2-b^4 \coth ^4(c+d x)}d\sqrt {b \coth (c+d x)}}{b d}-\frac {2}{3 b d (b \coth (c+d x))^{3/2}}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {2 \left (\frac {\int \frac {1}{b-b^2 \coth ^2(c+d x)}d\sqrt {b \coth (c+d x)}}{2 b}+\frac {\int \frac {1}{b^2 \coth ^2(c+d x)+b}d\sqrt {b \coth (c+d x)}}{2 b}\right )}{b d}-\frac {2}{3 b d (b \coth (c+d x))^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 \left (\frac {\int \frac {1}{b-b^2 \coth ^2(c+d x)}d\sqrt {b \coth (c+d x)}}{2 b}+\frac {\arctan \left (\sqrt {b} \coth (c+d x)\right )}{2 b^{3/2}}\right )}{b d}-\frac {2}{3 b d (b \coth (c+d x))^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \left (\frac {\arctan \left (\sqrt {b} \coth (c+d x)\right )}{2 b^{3/2}}+\frac {\text {arctanh}\left (\sqrt {b} \coth (c+d x)\right )}{2 b^{3/2}}\right )}{b d}-\frac {2}{3 b d (b \coth (c+d x))^{3/2}}\)

input
Int[(b*Coth[c + d*x])^(-5/2),x]
 
output
(2*(ArcTan[Sqrt[b]*Coth[c + d*x]]/(2*b^(3/2)) + ArcTanh[Sqrt[b]*Coth[c + d 
*x]]/(2*b^(3/2))))/(b*d) - 2/(3*b*d*(b*Coth[c + d*x])^(3/2))
 

3.1.7.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3955
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x] 
)^(n + 1)/(b*d*(n + 1)), x] - Simp[1/b^2   Int[(b*Tan[c + d*x])^(n + 2), x] 
, x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
3.1.7.4 Maple [A] (verified)

Time = 0.14 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.81

method result size
derivativedivides \(\frac {\arctan \left (\frac {\sqrt {b \coth \left (d x +c \right )}}{\sqrt {b}}\right )}{b^{\frac {5}{2}} d}+\frac {\operatorname {arctanh}\left (\frac {\sqrt {b \coth \left (d x +c \right )}}{\sqrt {b}}\right )}{b^{\frac {5}{2}} d}-\frac {2}{3 b d \left (b \coth \left (d x +c \right )\right )^{\frac {3}{2}}}\) \(64\)
default \(\frac {\arctan \left (\frac {\sqrt {b \coth \left (d x +c \right )}}{\sqrt {b}}\right )}{b^{\frac {5}{2}} d}+\frac {\operatorname {arctanh}\left (\frac {\sqrt {b \coth \left (d x +c \right )}}{\sqrt {b}}\right )}{b^{\frac {5}{2}} d}-\frac {2}{3 b d \left (b \coth \left (d x +c \right )\right )^{\frac {3}{2}}}\) \(64\)

input
int(1/(b*coth(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
arctan((b*coth(d*x+c))^(1/2)/b^(1/2))/b^(5/2)/d+arctanh((b*coth(d*x+c))^(1 
/2)/b^(1/2))/b^(5/2)/d-2/3/b/d/(b*coth(d*x+c))^(3/2)
 
3.1.7.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 689 vs. \(2 (63) = 126\).

Time = 0.28 (sec) , antiderivative size = 1428, normalized size of antiderivative = 18.08 \[ \int \frac {1}{(b \coth (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(1/(b*coth(d*x+c))^(5/2),x, algorithm="fricas")
 
output
[-1/12*(6*(cosh(d*x + c)^4 + 4*cosh(d*x + c)*sinh(d*x + c)^3 + sinh(d*x + 
c)^4 + 2*(3*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^2 + 2*cosh(d*x + c)^2 + 4*( 
cosh(d*x + c)^3 + cosh(d*x + c))*sinh(d*x + c) + 1)*sqrt(-b)*arctan((cosh( 
d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2)*sqrt(-b)*sqr 
t(b*cosh(d*x + c)/sinh(d*x + c))/(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*si 
nh(d*x + c) + b*sinh(d*x + c)^2 + b)) + 3*(cosh(d*x + c)^4 + 4*cosh(d*x + 
c)*sinh(d*x + c)^3 + sinh(d*x + c)^4 + 2*(3*cosh(d*x + c)^2 + 1)*sinh(d*x 
+ c)^2 + 2*cosh(d*x + c)^2 + 4*(cosh(d*x + c)^3 + cosh(d*x + c))*sinh(d*x 
+ c) + 1)*sqrt(-b)*log(-(b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)^3*sinh(d*x 
+ c) + 6*b*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*b*cosh(d*x + c)*sinh(d*x + 
c)^3 + b*sinh(d*x + c)^4 + 2*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + 
 c) + sinh(d*x + c)^2 - 1)*sqrt(-b)*sqrt(b*cosh(d*x + c)/sinh(d*x + c)) - 
2*b)/(cosh(d*x + c)^4 + 4*cosh(d*x + c)^3*sinh(d*x + c) + 6*cosh(d*x + c)^ 
2*sinh(d*x + c)^2 + 4*cosh(d*x + c)*sinh(d*x + c)^3 + sinh(d*x + c)^4)) + 
8*(cosh(d*x + c)^4 + 4*cosh(d*x + c)*sinh(d*x + c)^3 + sinh(d*x + c)^4 + 2 
*(3*cosh(d*x + c)^2 - 1)*sinh(d*x + c)^2 - 2*cosh(d*x + c)^2 + 4*(cosh(d*x 
 + c)^3 - cosh(d*x + c))*sinh(d*x + c) + 1)*sqrt(b*cosh(d*x + c)/sinh(d*x 
+ c)))/(b^3*d*cosh(d*x + c)^4 + 4*b^3*d*cosh(d*x + c)*sinh(d*x + c)^3 + b^ 
3*d*sinh(d*x + c)^4 + 2*b^3*d*cosh(d*x + c)^2 + b^3*d + 2*(3*b^3*d*cosh(d* 
x + c)^2 + b^3*d)*sinh(d*x + c)^2 + 4*(b^3*d*cosh(d*x + c)^3 + b^3*d*co...
 
3.1.7.6 Sympy [F]

\[ \int \frac {1}{(b \coth (c+d x))^{5/2}} \, dx=\int \frac {1}{\left (b \coth {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(1/(b*coth(d*x+c))**(5/2),x)
 
output
Integral((b*coth(c + d*x))**(-5/2), x)
 
3.1.7.7 Maxima [F]

\[ \int \frac {1}{(b \coth (c+d x))^{5/2}} \, dx=\int { \frac {1}{\left (b \coth \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/(b*coth(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate((b*coth(d*x + c))^(-5/2), x)
 
3.1.7.8 Giac [F(-2)]

Exception generated. \[ \int \frac {1}{(b \coth (c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(1/(b*coth(d*x+c))^(5/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 
3.1.7.9 Mupad [B] (verification not implemented)

Time = 2.12 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.80 \[ \int \frac {1}{(b \coth (c+d x))^{5/2}} \, dx=\frac {\mathrm {atan}\left (\frac {\sqrt {b\,\mathrm {coth}\left (c+d\,x\right )}}{\sqrt {b}}\right )}{b^{5/2}\,d}-\frac {2}{3\,b\,d\,{\left (b\,\mathrm {coth}\left (c+d\,x\right )\right )}^{3/2}}+\frac {\mathrm {atanh}\left (\frac {\sqrt {b\,\mathrm {coth}\left (c+d\,x\right )}}{\sqrt {b}}\right )}{b^{5/2}\,d} \]

input
int(1/(b*coth(c + d*x))^(5/2),x)
 
output
atan((b*coth(c + d*x))^(1/2)/b^(1/2))/(b^(5/2)*d) - 2/(3*b*d*(b*coth(c + d 
*x))^(3/2)) + atanh((b*coth(c + d*x))^(1/2)/b^(1/2))/(b^(5/2)*d)