3.3.6 \(\int \frac {\coth ^3(x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx\) [206]

3.3.6.1 Optimal result
3.3.6.2 Mathematica [A] (verified)
3.3.6.3 Rubi [C] (warning: unable to verify)
3.3.6.4 Maple [A] (verified)
3.3.6.5 Fricas [B] (verification not implemented)
3.3.6.6 Sympy [F]
3.3.6.7 Maxima [F]
3.3.6.8 Giac [F]
3.3.6.9 Mupad [F(-1)]

3.3.6.1 Optimal result

Integrand size = 23, antiderivative size = 105 \[ \int \frac {\coth ^3(x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx=-\frac {\text {arctanh}\left (\frac {b+2 c \coth ^2(x)}{2 \sqrt {c} \sqrt {a+b \coth ^2(x)+c \coth ^4(x)}}\right )}{2 \sqrt {c}}+\frac {\text {arctanh}\left (\frac {2 a+b+(b+2 c) \coth ^2(x)}{2 \sqrt {a+b+c} \sqrt {a+b \coth ^2(x)+c \coth ^4(x)}}\right )}{2 \sqrt {a+b+c}} \]

output
-1/2*arctanh(1/2*(b+2*c*coth(x)^2)/c^(1/2)/(a+b*coth(x)^2+c*coth(x)^4)^(1/ 
2))/c^(1/2)+1/2*arctanh(1/2*(2*a+b+(b+2*c)*coth(x)^2)/(a+b+c)^(1/2)/(a+b*c 
oth(x)^2+c*coth(x)^4)^(1/2))/(a+b+c)^(1/2)
 
3.3.6.2 Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.52 \[ \int \frac {\coth ^3(x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx=-\frac {\left ((a+b+c) \text {arctanh}\left (\frac {2 c+b \tanh ^2(x)}{2 \sqrt {c} \sqrt {c+b \tanh ^2(x)+a \tanh ^4(x)}}\right )-\sqrt {c} \sqrt {a+b+c} \text {arctanh}\left (\frac {b+2 c+(2 a+b) \tanh ^2(x)}{2 \sqrt {a+b+c} \sqrt {c+b \tanh ^2(x)+a \tanh ^4(x)}}\right )\right ) \sqrt {a+b \coth ^2(x)+c \coth ^4(x)} \tanh ^2(x)}{2 \sqrt {c} (a+b+c) \sqrt {c+b \tanh ^2(x)+a \tanh ^4(x)}} \]

input
Integrate[Coth[x]^3/Sqrt[a + b*Coth[x]^2 + c*Coth[x]^4],x]
 
output
-1/2*(((a + b + c)*ArcTanh[(2*c + b*Tanh[x]^2)/(2*Sqrt[c]*Sqrt[c + b*Tanh[ 
x]^2 + a*Tanh[x]^4])] - Sqrt[c]*Sqrt[a + b + c]*ArcTanh[(b + 2*c + (2*a + 
b)*Tanh[x]^2)/(2*Sqrt[a + b + c]*Sqrt[c + b*Tanh[x]^2 + a*Tanh[x]^4])])*Sq 
rt[a + b*Coth[x]^2 + c*Coth[x]^4]*Tanh[x]^2)/(Sqrt[c]*(a + b + c)*Sqrt[c + 
 b*Tanh[x]^2 + a*Tanh[x]^4])
 
3.3.6.3 Rubi [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 0.40 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.50, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 26, 4184, 1578, 1269, 1092, 219, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\coth ^3(x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i \cot (i x)^3}{\sqrt {a-b \cot (i x)^2+c \cot (i x)^4}}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {\cot (i x)^3}{\sqrt {c \cot (i x)^4-b \cot (i x)^2+a}}dx\)

\(\Big \downarrow \) 4184

\(\displaystyle \int \frac {i \coth ^3(x)}{\left (1-\coth ^2(x)\right ) \sqrt {a+b \coth ^2(x)+c \coth ^4(x)}}d(-i \coth (x))\)

\(\Big \downarrow \) 1578

\(\displaystyle \frac {1}{2} \int -\frac {\coth ^2(x)}{(1-i \coth (x)) \sqrt {-c \coth ^2(x)+i b \coth (x)+a}}d\left (-\coth ^2(x)\right )\)

\(\Big \downarrow \) 1269

\(\displaystyle \frac {1}{2} \left (\int \frac {1}{\sqrt {-c \coth ^2(x)+i b \coth (x)+a}}d\left (-\coth ^2(x)\right )-\int \frac {1}{\left (1-\coth ^2(x)\right ) \sqrt {-c \coth ^2(x)+i b \coth (x)+a}}d\left (-\coth ^2(x)\right )\right )\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {1}{2} \left (2 \int \frac {1}{\coth ^2(x)+4 c}d\left (-\frac {b+2 i c \coth (x)}{\sqrt {-c \coth ^2(x)+i b \coth (x)+a}}\right )-\int \frac {1}{\left (1-\coth ^2(x)\right ) \sqrt {-c \coth ^2(x)+i b \coth (x)+a}}d\left (-\coth ^2(x)\right )\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (-\int \frac {1}{\left (1-\coth ^2(x)\right ) \sqrt {-c \coth ^2(x)+i b \coth (x)+a}}d\left (-\coth ^2(x)\right )-\frac {i \arctan \left (\frac {\coth (x)}{2 \sqrt {c}}\right )}{\sqrt {c}}\right )\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {1}{2} \left (2 \int \frac {1}{\coth ^2(x)+4 (a+b+c)}d\frac {2 a+b+i (b+2 c) \coth (x)}{\sqrt {-c \coth ^2(x)+i b \coth (x)+a}}-\frac {i \arctan \left (\frac {\coth (x)}{2 \sqrt {c}}\right )}{\sqrt {c}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (-\frac {i \arctan \left (\frac {\coth (x)}{2 \sqrt {a+b+c}}\right )}{\sqrt {a+b+c}}-\frac {i \arctan \left (\frac {\coth (x)}{2 \sqrt {c}}\right )}{\sqrt {c}}\right )\)

input
Int[Coth[x]^3/Sqrt[a + b*Coth[x]^2 + c*Coth[x]^4],x]
 
output
(((-I)*ArcTan[Coth[x]/(2*Sqrt[c])])/Sqrt[c] - (I*ArcTan[Coth[x]/(2*Sqrt[a 
+ b + c])])/Sqrt[a + b + c])/2
 

3.3.6.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1269
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + b*x + 
 c*x^2)^p, x], x] + Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + b*x + c*x^2)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 1578
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a 
+ b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && Int 
egerQ[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4184
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*( 
f_.))^(n_.) + (c_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] 
 :> Simp[-f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), 
x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[ 
n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 
3.3.6.4 Maple [A] (verified)

Time = 0.73 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.86

method result size
derivativedivides \(-\frac {\ln \left (\frac {\frac {b}{2}+c \coth \left (x \right )^{2}}{\sqrt {c}}+\sqrt {a +b \coth \left (x \right )^{2}+c \coth \left (x \right )^{4}}\right )}{2 \sqrt {c}}+\frac {\operatorname {arctanh}\left (\frac {b \coth \left (x \right )^{2}+2 c \coth \left (x \right )^{2}+2 a +b}{2 \sqrt {a +b +c}\, \sqrt {a +b \coth \left (x \right )^{2}+c \coth \left (x \right )^{4}}}\right )}{2 \sqrt {a +b +c}}\) \(90\)
default \(-\frac {\ln \left (\frac {\frac {b}{2}+c \coth \left (x \right )^{2}}{\sqrt {c}}+\sqrt {a +b \coth \left (x \right )^{2}+c \coth \left (x \right )^{4}}\right )}{2 \sqrt {c}}+\frac {\operatorname {arctanh}\left (\frac {b \coth \left (x \right )^{2}+2 c \coth \left (x \right )^{2}+2 a +b}{2 \sqrt {a +b +c}\, \sqrt {a +b \coth \left (x \right )^{2}+c \coth \left (x \right )^{4}}}\right )}{2 \sqrt {a +b +c}}\) \(90\)

input
int(coth(x)^3/(a+b*coth(x)^2+c*coth(x)^4)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/2*ln((1/2*b+c*coth(x)^2)/c^(1/2)+(a+b*coth(x)^2+c*coth(x)^4)^(1/2))/c^( 
1/2)+1/2/(a+b+c)^(1/2)*arctanh(1/2*(b*coth(x)^2+2*c*coth(x)^2+2*a+b)/(a+b+ 
c)^(1/2)/(a+b*coth(x)^2+c*coth(x)^4)^(1/2))
 
3.3.6.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1522 vs. \(2 (85) = 170\).

Time = 0.90 (sec) , antiderivative size = 6695, normalized size of antiderivative = 63.76 \[ \int \frac {\coth ^3(x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx=\text {Too large to display} \]

input
integrate(coth(x)^3/(a+b*coth(x)^2+c*coth(x)^4)^(1/2),x, algorithm="fricas 
")
 
output
Too large to include
 
3.3.6.6 Sympy [F]

\[ \int \frac {\coth ^3(x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx=\int \frac {\coth ^{3}{\left (x \right )}}{\sqrt {a + b \coth ^{2}{\left (x \right )} + c \coth ^{4}{\left (x \right )}}}\, dx \]

input
integrate(coth(x)**3/(a+b*coth(x)**2+c*coth(x)**4)**(1/2),x)
 
output
Integral(coth(x)**3/sqrt(a + b*coth(x)**2 + c*coth(x)**4), x)
 
3.3.6.7 Maxima [F]

\[ \int \frac {\coth ^3(x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx=\int { \frac {\coth \left (x\right )^{3}}{\sqrt {c \coth \left (x\right )^{4} + b \coth \left (x\right )^{2} + a}} \,d x } \]

input
integrate(coth(x)^3/(a+b*coth(x)^2+c*coth(x)^4)^(1/2),x, algorithm="maxima 
")
 
output
integrate(coth(x)^3/sqrt(c*coth(x)^4 + b*coth(x)^2 + a), x)
 
3.3.6.8 Giac [F]

\[ \int \frac {\coth ^3(x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx=\int { \frac {\coth \left (x\right )^{3}}{\sqrt {c \coth \left (x\right )^{4} + b \coth \left (x\right )^{2} + a}} \,d x } \]

input
integrate(coth(x)^3/(a+b*coth(x)^2+c*coth(x)^4)^(1/2),x, algorithm="giac")
 
output
integrate(coth(x)^3/sqrt(c*coth(x)^4 + b*coth(x)^2 + a), x)
 
3.3.6.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\coth ^3(x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx=\int \frac {{\mathrm {coth}\left (x\right )}^3}{\sqrt {c\,{\mathrm {coth}\left (x\right )}^4+b\,{\mathrm {coth}\left (x\right )}^2+a}} \,d x \]

input
int(coth(x)^3/(a + b*coth(x)^2 + c*coth(x)^4)^(1/2),x)
 
output
int(coth(x)^3/(a + b*coth(x)^2 + c*coth(x)^4)^(1/2), x)